Skip to main content

Explosive Shaped Projectors for Forming High-Velocity Compact Elements


This study presents a review of high-velocity projection methods and devices intended for the experimental study of the protection of equipment and structures from a high-velocity impact by compact elements, particularly protecting spacecrafts from collision with natural meteorite particles. Explosive projectors used in experiments to test protective structures at high impact velocities are shown. The results of numerical and experimental studies of these schemes are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1

    A. J. Cable, “Hypervelocity Accelerators," inHigh-Velocity Impact Phenomena (Academic Press, 1970).

  2. 2

    Kurzzeitphysik High-Speed Physics Physique des Phenomenes Ultra-Rapides, Ed. by K. Vollrath and G. Thomer (Springer, 1967).

  3. 3

    V. M. Titov and G. A. Shvetsov, “Laboratory Methods of Launching Projectiles by Means of Shaped Charges," Fiz. Goreniya Vzryva6 (3), 401–404 (1970) [Combust., Expl., Shock Waves6 (3), 349–351 (1970)].

  4. 4

    L. A. Merzhievskii, V. M. Titov, Yu. I. Fadeenko, and G. A. Shvetsov, “High-Speed Launching of Solid Bodies," Fiz. Goreniya Vzryva 23 (5), 77–91 (1987) [Combust., Expl., Shock Waves 23 (5), 576–589 (1987)].

  5. 5

    “Three Directions of Development of Electromagnetic Guns in the United States," in Equipment and Weaponry of the Land Forces of Capitalist States, Vol. 1 (1988).

  6. 6

    A. G. Anisimov, Yu. L. Bashkatov, and G. A. Shvetsov, “Explosive-Magnetic Generators as Power Sources for Railgun Accelerators of Solid Projectiles," Fiz. Goreniya Vzryva22 (4), 76–88 (1986) [Combust., Expl., Shock Waves22 (4), 457–462 (1986)].

  7. 7

    U. Hornemann and A. Holzwarth, “Characteristics of Shaped Charges with Hemispherical Liners," Propell., Explos., Pyrotech. 18 (5), 282–287 (1993).

  8. 8

    A. G. Baleevskii, Yu. G. Kiselev, V. A. Mogilev, et al., “High-Velocity Projection of Compact Elements," in Modern Method for Designing and Testing Weapon Ordnance (VNIIEF, Sarov, 2000) [in Russian].

  9. 9

    I. V. Zhdanov, A. S. Knyazev, and D. V. Malyarov, “Production of High-Velocity Compact Elements of Required Weights with Proportional Variation of Shaped Properties," in Modern Method for Designing and Testing Weapon Ordnance (VNIIEF, Sarov, 2000) [in Russian].

  10. 10

    S. V. Ladov and S. V. Fedorov, “Combined Shaped Liner for the Formation of High-Velocity Compact Elements," RF Patent No. 2549505, Publ. April 27, 2015.

  11. 11

    S. V. Fedorov, Ya. M. Bayanova, and S. V. Ladov, “Numerical Analysis of the Effect of the Geometric Parameters of a Combined Shaped-Charge Liner on the Mass and Velocity of Explosively Formed Compact Elements," Fiz. Goreniya Vzryva 51 (1), 150–164 (2015) [Combust., Expl., Shock Waves 51 (1), 130–142 (2015)].

  12. 12

    S. V. Fedorov, S. V. Ladov, Ya. M. Nikol’skaya, et al., “Formation of a High-Velocity Particle Flow from Shaped Charges with a Liner Consisting of a Hemisphere and a Degressive-Thickness Cylinder," Fiz. Goreniya Vzryva 53 (4), 122–125 (2017) [Combust., Expl., Shock Waves 53 (4), 479–482 (2017)].

  13. 13

    V. I. Kolpakov, S. V. Ladov, Ya. M. Nikolskaya, and S. V.  Fedorov, “Analysis of the Effect of Physico-Mechanical Characteristics of Cumulative Liner Material on Parameters of a High-Speed Element," Zh. Tekh. Fiz. 63 (12), 1829–1836 (2018) [Tech. Phys. 63 (12), 1784–1791 (2018)].

  14. 14

    A. S. Knyazev and D. V. Malyarov, “Method and Device for Forming a Compact Element," RF Patent No. 2309367, Publ. October 27, 2007, Bul. No. 30.

  15. 15

    A. S. Knyazev and D. V. Malyarov, “Device for Forming a Compact Element," RF Patent No. 2525330, Publ. August 10, 2014, Bul. No. 22.

  16. 16

    E. I. Zababakhin and I. E. Zababakhin, Unbounded Cumulation Phenomena (Nauka, Moscow, 1988) [in Russian].

  17. 17

    A. S. Knyazev and D. V. Malyarov, “Method and Device for Forming a Compact Element," RF Patent No. 2553611, Publ. June 20, 2015, Bul. No. 27.

  18. 18

    J. P. Leyrat, E. Charvet, and H. C. Pujols, “Creation and Simulation of Very Fast Jets," Int. J. Impact Eng. 14 (1–4), 467–477 (1993).

  19. 19

    M. Held, “Diagnostic of Superfast Jets with 25 km/s Tip Velocities," Propell., Explos., Pyrotech. 23 (5), 229–236 (1998).

  20. 20

    N. A. Goldenko, E. F. Gryaznov, A. D. Sudomoev, and V. A. Fel’dstein, “Investigation of the Influence of the Design Parameters of an Explosive Propelling Device on the Speed and Nature of the Missile Element," Kosm. Raketostr., No. 7, 42–47 (2016).

  21. 21

    A. S. Knyazev and D. V. Malyarov, “Device for Forming a Compact Element," RF Patent No. 73727, Publ. May 27, 2008, Bul. No. 22.

  22. 22

    A. S. Knyazev and D. V. Malyarov, “Shaped Projector," RF Patent No. 2378606, Publ. January 10, 2010, Bul. No. 15.

  23. 23

    “Shaped Device," RF Patent No. 2383849, Publ. March 10, 2010, Bul. No. 7.

  24. 24

    S. I. Gerasimov, D. V. Zakharov, A. V. Zubankov, et al., “X-Ray Recording on Test-Benches," Nauch. Vizual. 10(2), 112–137 (2018).

Download references

Author information



Corresponding author

Correspondence to S. I. Gerasimov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, S.I., Malyarov, D.V., Sirotkina, A.G. et al. Explosive Shaped Projectors for Forming High-Velocity Compact Elements. Combust Explos Shock Waves 56, 486–493 (2020).

Download citation


  • explosive projector
  • compact element
  • shaped-charge liner
  • cavitation charge
  • detonation wave