Skip to main content
Log in

Calculation of Shock Waves in an Explosion of a Liquid Gas Pressure Reservoir

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Rapid phase transitions occurring with a sharp increase in a specific volume can be accompanied by explosive gas-dynamic phenomena. A model is presented for calculating shock waves generated in the atmosphere during an explosion of a liquid gas pressure reservoir, based on the assumption of a thermodynamically equilibrium state of a vapor–liquid mixture in which both vapor and liquid have equal velocities and are in a state of saturation at local pressure. The spherically symmetric expansion of a boiling liquid cloud is calculated, pressure profiles under various initial conditions are compared, and the primary shock wave parameters are validated according to the results of available experimental data. Two-dimensional calculations of shock waves during the fracture of a cylindrical tank near the underlying surface at various degrees of filling are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. B. E. Gelfand, “Features and Simulations of Non-Ideal Explosions," in Fire and Explosion Hazards: Proc. of the 3rd Int. Seminar, Preston, UCLan, 2001.

  2. B. E. Gel’fand and M. V. Sil’nikov, Chemical and Physical Explosions. Parameters and Control (Poligon, St. Petersburg, 2003) [in Russian].

  3. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires and BLEVEs (AIChE/CCPS, 1994).

  4. Russian State Standard (GOST) No. R 12.3.047-98:Occupational Safety Standards System. Fire Safety of Technological Processes. General Requirements. Methods of Control (1998).

  5. W. E. Clayton and M. L. Griffin, “Catastrophic Failure of a Liquid Carbon Dioxide Storage Vessel," Process Saf. Prog. 13 (4), 202–209 (1994).

  6. S. P. Medvedev, A. N. Polenov, and B. E. Gel’fand, “Shock-Wave Parameters in the Explosive Expansion of Effervescing Liquid," Fiz. Goreniya Vzryva 27 (4), 21–31 (1991) [Combust., Expl., Shock Waves 27 (4), 438–442 (1991)].

  7. H. Giesbrecht, K. Hess, W. Leuckel, and B. Maurer, “Analysis of Explosion Hazards on Spontaneous Release of Inflammable Gases into the Atmosphere. Part 1: Propagation and Deflagration of Vapour Clouds on the Basis of Bursting Tests on Model Vessels," Ger. Chem. Eng. 4, 305–314 (1981).

  8. H. Giesbrecht, G. Hemmer, K. Hess, et al., “Analysis of Explosion Hazards on Spontaneous Release of Inflammable Gases into the Atmosphere. Part 2: Comparison of Explosion Model Derived from Experiments with Damage Effects of Explosion Accidents," Ger. Chem. Eng. 4, 315–325 (1981).

  9. D. M. Johnson and M. J. Pritchard, “Large-Scale Experimental Study of Boiling Liquid Expanding Vapour Explosions (BLEVEs)," in14th Int. LNG/LPG Conf. and Exhibition, Gastech, 1990.

  10. A. M. Birk, “Observations from Medium Scale BLEVE Experiments," in Fire and Explosion Hazards: Proc. of the 3rd Int. Seminar, Preston, UCLan, 2001.

  11. A. M. Birk, C. Davison, and M. Cunningham, “Blast Overpressures from Medium Scale BLEVE Tests," J. Loss Prevent. Proc. Ind. 20 (3), 194–206 (2007).

  12. A. M. Birk and J. D. J. Vandersteen, “On the Transition from non-BLEVE to BLEVE Failure for a 1.8 m3 Propane Tank," ASME J. Press. Vessel Technol. 128(4), 648–655 (2006).

  13. A. M. Birk, D. Poirier, and C. Davison, “On the Response of 500 Gal Propane Tanks to a 25% Engulfing Fire," J. Loss Prevent. Proc. Ind. 19 (6), 527–541 (2006).

  14. E. Planas-Cuchi, J. M. Salla, and J. Casal, “Calculating Overpressure from BLEVE Explosions," J. Loss Prevent. Proc. Ind. 17 (6), 431–436 (2004).

  15. D. Laboureur, F. Heymes, E. Lapebie, et al., “BLEVE Overpressure: Multiscale Comparison of Blast Wave Modeling," Process Saf. Prog. 33 (3), 274–284 (2014).

  16. A. C. Van den Berg, M. M. van der Voort, J. Weerheijm, and N. H. A. Versloot, “Expansion-Controlled Evaporation: A Safe Approach to BLEVE Blast," J. Loss Prev. Proc. Ind. 17 (6), 397–405 (2004).

  17. A. C. Van den Berg, M. M. van der Voort, J. Weerheijm, and N. H. A. Versloot, “BLEVE Blast by Expansion-Controlled Evaporation," Process Saf. Prog. 25 (1), 44–51 (2006).

  18. G. A. Pinhasi, A. Ullmann, and A. Dayan, “1D Plane Numerical Model for Boiling Liquid Expanding Vapor Explosion (BLEVE)," Int. J. Heat Mass Transfer. 50 (23/24), 4780–4795 (2007).

  19. G. M. Makhviladze and S. E. Yakush, “Blast Waves and Fireballs from Bursts of Vessels with Pressure-Liquefied Hydrocarbons," Proc. Combust. Inst. 29 (1), 313–320 (2003).

  20. G. M. Makhviladze and S. E. Yakush, “Modelling of Formation and Combustion of Accidentally Released Fuel Clouds," Process Saf. Environ. Prot. 83 (B2), 171–177 (2005).

  21. S. E. Yakush, “Model for Blast Waves of Boiling Liquid Expanding Vapor Explosions," Int. J. Heat Mass Transfer. 103, 173–185 (2016).

  22. V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gas- and Vapor-Fluid Media (Energoatomizdat, Moscow, 1990) [in Russian].

  23. R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method)," J. Comput. Phys. 152, 457–492 (1999).

  24. A. Kurganov and E. Tadmor, “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations," J. Comput. Phys. 160, 241–282 (2000).

  25. NIST Chemistry Webbook (2018); https://webbook. nist.gov/ chemistry/fluid/.

  26. S. E. Yakush, “Shock Waves from Explosions Due to Boil-Up of Superheated Liquids," in Proc. of the 9th Int. Seminar on Fire and Explosion Hazards (Peter the Great St. Petersburg Polytech. Univ. Press, 2019).

  27. D. W. Boyer, “An Experimental Study of the Explosion Generated by a Pressurized Sphere," J. Fluid Mech. 9, 401–429 (1960).

  28. B. Vanderstraeten, M. Lefebvre, and J. Berghmans, “A Simple Blast Wave Model for Bursting Spheres Based on Numerical Simulation," J. Hazard. Mat. 46 (2–3), 145–157 (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Yakush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakush, S.E. Calculation of Shock Waves in an Explosion of a Liquid Gas Pressure Reservoir. Combust Explos Shock Waves 56, 444–453 (2020). https://doi.org/10.1134/S0010508220040085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508220040085

Keywords

Navigation