Skip to main content
Log in

Effect of Initial Temperature and Mechanical Activation on Synthesis in a Ti + Al System

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Synthesis is carried out in a Ti + Al mixture prepared by two methods, namely preliminary mechanical activation (MA) or preheating. Synthesis occurs in the cases of layer-by-layer combustion (SHS) and thermal explosion. The dependences of burning rates of activated Ti + Al mixtures on the MA duration are investigated. The relationships between the initial temperature and the rates and maximum combustion temperatures of initial mixtures along with the elongation of samples after combustion are determined. The phase composition of the initial mixtures after activation and of the synthesis products is described. The MA duration (12 min) at which the burning rate of the mixture is maximum is experimentally determined. For this mixture (12-min long MA), the dependence of the burning rates and maximum combustion temperatures along with the elongation of samples after combustion on the initial temperature is studied. Synthesis at which the content of the main phases (TiAl and Ti3Al) in the products is maximized is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. P. Doorbar, M. Dixon, and A. Chatterjee, “Aero-Engine Titanium: from Alloys to Composites," Mater. Sci. Forum. 618-619, 127–134 (2009); https://doi.org/10.4028; www.scientific.net/MSF.618-619.127.

  2. J. Banhart, “Manufacture, Characterization, and Application of Cellular Metals and Metal Foam," Prog. Mater. Sci. 46 (6), 559–632 (2001).

  3. T. Novoselova et al., “Formation of TiAl Inter-Metallics by Heat Treatment of Cold-Sprayed Precursor Deposits," J. Alloys Compd. 436 (1/2), 69–77 (2007); DOI: 10.1016/j.jallcom.2006.06.101.

  4. M. Palm, L. C. Zhang, F. Stein, and G. Sauthoff, “Phases and Phase Equilibria in the Al-Rich Part of the Al–Ti System Above 900," Intermetallics 10 (6), 523–540 (2002); DOI: 10.1016/S0966-9795(02)00022-5.

  5. R. Przeliorz, M. Goral, G. Moskal, and L. Swadzba, “The Relationship Between Specific Heat Capacity and Oxidation Resistance of TiAl Alloys," J. Achiev. Mater. Manuf. Eng. 21(1), 47–50 (2007).

  6. A. Rohatgi, D. J. Harach, K. S. Vecchio, and K. P. Harvey, “Resistance-Curve and Fracture Behavior of Ti–Al3Ti Metallic–Intermetallic Laminate (MIL) Composites," Acta Mater. 51 (10), 2933–2957 (2003); DOI: 10.1016/S1359-6454(03)00108-3.

  7. M. G. McKimpson and T. E. Scott, “Processing and Properties Of Metal Matrix Composites Containing Discontinuous Reinforcement," Mater. Sci. Eng. A. 107 (1/2), 93–106 (1989).

  8. A. P. Divecha, S. G. Fishman, and S. D. Karmarkar, “Silicon Carbide Reinforced Aluminum—A Formable Composite," J. Metals 33 (9), 12–17 (1981).

  9. C. G. Levi, C. J. Abbaschian, and R. Mehrabian, “Interface Interactions during Fabrication of Aluminum Alloy–Alumina Fiber Composites," Metall. Mater. Trans. A. 9 (5), 697–711 (1978).

  10. E. Medda, F. Delogu, and G. Cao, “Combination of Mechanochemical Activation and Self-Propagating Behaviour for the Synthesis of Ti Aluminides," Mater. Sci. Eng. A. 361 (1/2), 23–28 (2003); https://doi.org/10.1016/S0921-5093(03)00566-5.

  11. R. Orrú, G. Cao, and Z. A. Munir, “Field-Activated Combustion Synthesis of Titanium Aluminides," Metall. Mater. Trans. A 30 (4), 1101–1108 (1999).

  12. M. Adeli, S. H. Seyedein, M. R. Aboutalebi, et al., “A Study on the Combustion Synthesis of Titanium Aluminide in the Self-Propagating Mode," J. Alloys Compd. 497 (1/2), 100–104 (2010); https://doi.org/10.1016/j.jallcom.2010.03.050.

  13. S. H. Lee, J. H. Lee, Y. H. Lee, et al., “Effect of Heating Rate on the Combustion Synthesis of Intermetallics," Mater. Sci. Eng. A 281 (1-2), 275–285 (2000).

  14. N. Bertolino, M. Monagheddu, A. Tacca, et al., “Ignition Mechanism in Combustion Synthesis of Ti–Al and Ti–Ni Systems," Intermetallics 11 (1), 41–49 (2003).

  15. O. D. Boyarchenko, O. K. Kamynina, A. E. Sytschev, et al., “Synthesis of Ti–Al-Based Materials by Thermal Explosion," Int. J. Self-Propag. High-Temp. Synth. 19 (4), 285–291 (2010); DOI: 10.3103/S1061386210040084.

  16. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions," Fiz. Goreniya Vzryva51 (5), 77–86 (2015) [Combust., Expl., Shock Waves51 (5), 578–586 (2015)]; DOI: 10.15372/FGV20150509.

  17. V. Yu. Filimonov, M. A. Korchagin, I. A. Dietenberg, et al., “High Temperature Synthesis of Single-Phase Ti3Al Intermetallic Compound in Mechanically Activated Powder Mixture," Powder Technol. 235, 606–613 (2013); DOI: 10.1016/j.powtec.2012.11.022.

  18. V. L. Kvanin, N. T. Balikhina, S. G. Vadchenko, et al., “Preparation of \(\gamma\)-TiAl Intermetallic Compounds through Self-Propagating High-Temperature Synthesis and Compaction," Neorg. Mater. 44 (11), 1327–1331 (2008) [Inorg. Mater. 44 (11), 1194–1198 (2008)]; DOI: 10.1134/S0020168508110095.

  19. H. Yi, A. Petric, and J. J. Moore, “Effect of Heating Rate on the Combustion Synthesis of Ti–Al Intermetallic Compounds," J. Mater. Sci. 27 (24), 6797–6806 (1992); DOI: 10.1007/BF01165971.

  20. H. Q. Che and Q. C. Fan, “Microstructural Evolution During the Ignition/Quenching of Pre-Heated Ti/3Al Powders," J. Alloys Compd. 475 (1-2), 184–190 (2009); DOI: 10.1016/j.jallcom.2008.07.035.

  21. T. Matsubara, K. Uenishi, and K. F. Kobayashi, “Fabrication of Thick Intermetallic Compound Al3Ti Layer on Metal Substrate by Combustion Synthesis of Ball-Milled Powder," Mater. Trans., JIM 41 (5), 631–634 (2000); DOI: 10.2320/matertrans1989.41.631.

  22. E. Medda, F. Delogu, and G. Cao, “Combination of Mechanochemical Activation and Self-Propagating Behaviour for the Synthesis of Ti Aluminides," Mater. Sci. Eng. A 361 (1-2), 23–28 (2003); DOI: 10.1016/S0921-5093(03)00566-5.

  23. V. Yu. Filimonov, A. A. Sitnikov, A. V. Afanas’ev, et al., “Microwave Assisted Combustion Synthesis in Mechanically Activated 3Ti + Al Powder Mixtures: Structure Formation," Int. J. Self-Propag. High-Temp. Synth. 23 (1), 18–25 (2014); DOI: 10.3103/S1061386214010038.

  24. N. A. Kochetov and B. S. Seplyarskii, “Effect of the Duration of the Mechanical Activation of Granulated Mixtures of 5Ti + 3Si on the Rate of Combustion Wave Propagation and the Elongation of Samples after Synthesis," Zh. Fiz. Khim. 92 (1), 56–61 (2018) [Russian J. Phys. Chem. A 92 (1), 47–52 (2018)]; DOI: 10.7868/S0044453718010119.

  25. N. A. Kochetov and B. S. Seplyarskii, “Impact of Mechanical Activation of Granulated and Powder Ni + Al Mixtures on the Flame Propagation Rate and Elongation of Samples during Combustion," Khim. Fiz. 37 (10), 44–50 (2018); DOI: 10.1134/S0207401X18100059.

  26. N. A. Kochetov, “Combustion and Characteristics of a Mechanically Activated Ni+Al Mixture. The Impact of Mass and Size of Grinding Spheres," Khim. Fiz. 35 (7), 49–54 (2016); DOI: 10.7868/S0207401X16070049.

  27. N. A. Kochetov and S. G. Vadchenko, “Effect of the Time of Mechanical Activation of a Ti + 2B Mixture on Combustion of Cylindrical Samples and Thin Foils," Fiz. Goreniya Vzryva51 (4), 77–81 (2015) [Combust., Expl., Shock Waves51 (4), 467–471 (2015)].

  28. D. Yu. Kovalev, N. A. Kochetov, V. I. Ponomarev, and A. S. Mukasyan, “Effect of Mechanical Activation on Thermal Explosion in Ni–Al Mixtures," Int. J. Self-Propag. High-Temp. Synth. 19 (2), 120–125 (2010); DOI: 10.3103/S106138621002007X.

  29. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid?State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition," Fiz. Goreniya Vzryva 39 (1), 51–59 (2003) [Combust., Expl., Shock Waves 39 (1), 43–50 (2015)].

  30. I. B. Zel’dovich, The Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Consultants Bureau, 1985).

  31. A. S. Rogachev and A. S. Mukasyan, Combustion for Material Synthesis (Fizmatlit, Moscow, 2012; CRC Press, 2014).

  32. D. Yu. Kovalev and N. A. Kochetov, “Behavior of the Ti–Al System During Mechanical Activation," Int. J. Self-Propag. High-Temp. Synth. 22 (1), 56–59 (2013); DOI: 10.3103/S1061386213010056.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A., Seplyarskii, B.S. Effect of Initial Temperature and Mechanical Activation on Synthesis in a Ti + Al System. Combust Explos Shock Waves 56, 308–316 (2020). https://doi.org/10.1134/S0010508220030077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508220030077

Keywords

Navigation