Skip to main content
Log in

Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and Their Compounds on the Thermal Behavior of Boron Oxide

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Physicochemical changes occurring in an oxide shell of boron particles during heating are extremely important for the oxidation and combustion of boron, including those in solid propellant compositions. The Al2O3, MgO, MgF2, Al, and Mg impurities were experimentally discovered in an oxide layer on boron particles obtained by various methods. The goal of this work is to determine the effect of these impurities on the thermal behavior of boron oxide, with particular attention paid to evaporation of B2O3. The temperature and thermal effects of reactions between the components are thermoanalytically determined, and the processes of dehydration, melting, and evaporation of boron oxide are analyzed in detail. The enthalpy of evaporation of boron oxide, starting at a temperature above 1300°C is experimentally determined, and is equal to 347 ± 3 kJ/mol. An interaction is observed between magnesium fluoride and boron oxide at a temperature of about 1000°C with a mass loss corresponding to the content of magnesium fluoride and the formation of gas-phase boron fluoride. It is established that boron dissolved in oxide has virtually no effect on the evaporation of the boron oxide melt, while the addition of Al2O3or MgO significantly increases its thermal stability. Based on the analysis of the results obtained, an assumption is made about the effect of impurities on boron activity in the processes of boron ignition and combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. B. Van Devener, J. P. L. Perez, J. Jankovich, and S. L. Anderson, “Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder As Combined Combustion Catalyst and High Energy Density Fuel," Energy Fuels 23 (12) 6111–6120 (2009); DOI:10.1021/ef900765h.

  2. K. Yu. Aref’ev, A. V. Voronetskii, A. N. Prokhorov, and L. S. Yanovskii, “Experimental Study of the Combustion Efficiency of Two-Phase Gasification Products of Energetic Boron-Containing Condensed Compositions in a High-Enthalpy Airflow," Fiz. Goreniya Vzryva 53 (3), 42–52 (2017) [Combust., Expl., Shock Waves53 (3), 283–292 (2017)].

  3. A. Gany and D. W. Netzer, “Combustion Studies of Metalized Fuels for Solid-Fuel Ramjets," J. Propul. Power 2(5), 423–427 (1986).

  4. A. Maceic and J. M. Semple, “Combustion of Boron Particles at Atmospheric Pressure," Combust. Sci. Technol. 1 (3), 181–191 (1969); DOI:10.1080/00102206908952199.

  5. Yu. V. Frolov, N. V. Obez’yaev, V. N. Emel’yanov, and A. A. Borisov, Combustion of Boron Particles (Institute of Problems of Chemical Physics, Chernogolovka, 1977) [in Russian].

  6. A. I. Grigor’ev, I. D. Grigor’eva, and V. I. Sigimov, “Oxidation Kinetics of Boron," Fiz. Goreniya Vzryva 12 (1), 52–56 (1976) [Combust., Expl., Shock Waves 12 (1), 44–47 (1976)].

  7. A. Gany and Y. M. Timnat, “Advantages and Drawbacks of Boron-Fueled Propulsion," Acta Astronaut. 29 (3), 181–187 (1993); DOI:10.1016/ -5765(93)90047-Z.

  8. A. R. Burke, C. R. Brown, W. C. Bowling, et al., “Ignition Mechanism of the Titanium–Boron Pyrotechnic Mixture," Surf. Interface Anal. 11 (6–7), 353–358 (1988); DOI:10.1002/sia.740110614.

  9. A. N. Pivkina, N. V. Muravyev, K. A. Monogarov, et al., “Comparative Analysis of Boron Powders Obtained by Various Methods. I. Microstructure and Oxidation Parameters during Heating," Fiz. Goreniya Vzryva 54 (4), 73–83 (2018) [Combust., Expl., Shock Waves 54 (4), 450–460 (2018)]; DOI:10.15372/FGV20180409.

  10. K.-L. Chintersingh, M. Schoenitz, and E. L. Dreizin, “Oxidation Kinetics and Combustion of Boron Particles with Modified Surface," Combust. Flame 173, 288–295 (2016); DOI:10.1016/j.combustflame.2016.08.027.

  11. X. Liu, J. Gonzales, M. Schoenitz, and E. L. Dreizin, “Effect of Purity and Surface Modification on Stability and Oxidation Kinetics of Boron Powders," Thermochim. Acta. 652, 17–23 (2017); DOI:10.1016/j.tca.2017.03.007.

  12. K.-L. Chintersingh, M. Schoenitz, and E. L. Dreizin, “Boron Doped with Iron: Preparation and Combustion in Air," Combust. Flame 200, 286–295 (2019); DOI:10.1016/j.combustflame.2018.11.031.

  13. D. Liang, J. Liu, Y. Zhou, and J. Zhou, “Ignition and Combustion Characteristics of Amorphous Boron and Coated Boron Particles in Oxygen Jet," Combust. Flame 185, 292–300 (2017); DOI:10.1016/j.combustflame.2017.07.030.

  14. Ya. I. Vovchuk, A. N. Zolotko, L. A. Klyachko, et al., “Gasification of Boron Oxide," Fiz. Goreniya Vzryva10 (4), 615–618 (1974) [Combust., Expl., Shock Waves10 (4), 538–540 (1974)];

  15. G. M. Faeth, “Status of Boron Combustion Research," inProc. 21st JANNAF Combust. Meet. (1984).

  16. H. Krier, R. L. Burton, S. R. Pirman, and M. J. Spalding, “Shock Initiation of Crystalline Boron in Oxygen and Fluorine Compounds," J. Propul. Power 12 (4), 672–679 (1996); DOI:10.2514/3.24088.

  17. G. Young, C. W. Roberts, and C. A. Stoltz, “Ignition and Combustion Enhancement of Boron with Polytetrafluoroethylene," J. Propul. Power 31 (1), 386–392 (2015); DOI:10.2514/1.B35390.

  18. M. L. Whittaker, R. A. Cutler, and P. E. Anderson, “Boride-Based Materials for Energetic Applications," Mater. Res. Soc. Symp. 1, 1405 (2012); DOI:10.1557/opl.2012.64.

  19. C. L. Yeh and K. K. Kuo, “Ignition and Combustion of Boron Particles," Prog. Energy Combust. Sci. 22 (6), 511–541 (1996); DOI:10.1016/S0360-1285(96)00012-3.

  20. S. Karmakar, N. Wang, S. Acharya, and K. M. Dooley, “Effects of Rare-Earth Oxide Catalysts on the Ignition and Combustion Characteristics of Boron Nanoparticles," Combust. Flame. 160 (12), 3004–3014 (2013); DOI:10.1016/j.combustflame.2013.06.030.

  21. E. Sandall, J. Kalman, J. N. Quigley, et al., “A Study of Solid Ramjet Fuel Containing Boron-Magnesium Mixtures," Propul. Power Res. 6 (4), 243–252 (2017); DOI:10.1016/j.jppr.2017.11.004.

  22. J. Liu, J. Xi, W. Yang, et al., “Effect of Magnesium on the Burning Characteristics of Boron Particles," Acta Astronaut 96 (1), 89–96 (2014); DOI:10.1016/j.actaastro.2013.11.039.

  23. E. Mohammad Sharifi, F. Karimzadeh, and M. H. Enayati, “A Study on Mechanochemical Behavior of B2O3–Al System to Produce Alumina-Based Nanocomposite," J. Alloys Compd. 482 (1), 110–113 (2009); DOI:10.1016/j.jallcom.2009.04.051.

  24. N. V. Muravyev, K. A. Monogarov, A. N. Zhigach, et al., “Exploring Enhanced Reactivity of Nanosized Titanium Toward Oxidation," Combust. Flame 191, 109–115 (2018); DOI:10.1016/j.combustflame.2018.01.011.

  25. C. A. Whitman, J. T. O’Flynn, A. J. Rayner, and S. F. Corbin, “Determining the Oxidation Behavior of Metal Powders during Heating through Thermogravimetric and Evolved Gas Analysis Using a Coupled Thermogravimetry-Gas Chromatography-Mass Spectrometry Technique," Thermochim. Acta. 638, 124–137 (2016); DOI:10.1016/j.tca.2016.06.019.

  26. S. Aghili, M. Panjepour, and M. Meratian, “Kinetic Analysis of Formation of Boron Trioxide from Thermal Decomposition of Boric Acid under Non-Isothermal Conditions," J. Therm. Anal. Calorim. 131 (3), 2443–2455 (2018); DOI:10.1007/s10973-017-6740-3.

  27. C. L. Yeh, K. K. Kuo, M. Klimkiewicz, and P. W. Brown, “Environmental Scanning Electron Microscopy Studies of Diffusion Mechanism of Boron Particle Combustion," SCANNING 19(2), 114–118 (1997); DOI:10.1002/sca.4950190210.

  28. P. G. Pittoni, Y.-Y. Chang, S.-Y. Lin, “Interpretation of the Peculiar Temperature Dependence of Surface Tension for Boron Trioxide," J. Taiwan Inst. Chem. Eng. 43 (6), 852–859 (2012). DOI:10.1016/j.jtice.2012.05.006.

  29. H. F. Rizzo, “Oxidation of Boron at Temperatures Between 400 and 1300°C in Air," in Boron Synthesis, Structure, and Properties: Proc. Conf. on Boron, Ed. by J. A. Kohn, W. F. Nye, and G. K. Gaulé (Springer, Boston, 1960); DOI:10.1007/978-1-4899-6572-1_21.

  30. W. C. Tripp and H. C. Graham, “Thermogravimetric Study of the Oxidation of ZrB2in the Temperature Range of 800°C to 1500°C," J. Electrochem. Soc. 118 (7), 1195–1199 (1971); DOI:10.1149/1.2408279.

  31. V. A. Lavrenko, A. P. Pomytkin, P. S. Kislyj, and B. L. Grabchuk, “Kinetics of High-Temperature Oxidation of Boron Carbide in Oxygen," Oxid. Met. 10 (2), 85–95 (1976); DOI:10.1007/BF00614238.

  32. R. Speiser, S. Naiditch, H. L. Johnston, “The Vapor Pressure of Inorganic Substances. II. B2O3," J. Am. Chem. Soc. 72 (6), 2578–2580 (1950); DOI:10.1021/ja01162a065.

  33. F. T. Greene and J. L. Margrave, “The Vapor Pressure of Boron Oxide over the Range 1 946–2 419 K," J. Phys. Chem. 70(7), 2112–2115 (1966); DOI:10.1021/j100879a007.

  34. D. L. Hildenbrand, W. F. Hall, and N. D. Potter, “Thermodynamics of Vaporization of Lithium Oxide, Boric Oxide, and Lithium Metaborate," J. Chem. Phys. 39 (2), 296–301 (1963); DOI:10.1063/1.1734245.

  35. A. Büchler and J. B. Berkowitz-Mattuck, “Gaseous Metaborates. I. Mass-Spectrometric Study of the Vaporization of Lithium and Sodium Metaborates," J. Chem. Phys. 39 286–291 (1963); DOI:10.1063/1.1734243.

  36. N. V. Muravyev, A. N. Pivkina, and V. G. Kiselev, “Comment on ’Studies on Thermodynamic Properties of FOX-7 and Its Five Closed-Loop Derivatives’ ", J. Chem. Eng. Data 62 (1), 575–576 (2017); DOI:10.1021/acs.jced.6b00483.

  37. Thermal Constants of Substances: Handbook, Ed. by V. P. Glushko (All-Russian Institute for Scientific and Technical Information (VINITI), Moscow, 1965–1982) [in Russian].

  38. D. Aǧaoǧullari, Ö. Balci, H. Gökçe, et al., “Synthesis of Magnesium Borates by Mechanically Activated Annealing," Metall. Mater. Trans. A. 43 (7), 2520–2533 (2012); DOI:10.1007/s11661-012-1109-5.

  39. K. Peil, G. Marcelin, and L. G. Galya, “Acid and Catalytic Properties of Nonstoichiometric Aluminum Borates," J. Catal.115 (2), 441–451 (1989); DOI:10.1016/0021-9517(89)90048-1.

  40. C. W. Bale, E. Bélisle, P. Chartrand, and S. A. Decterov, “FactSage Thermochemical Software and Databases, 2010–2016," Calphad 54, 35–53 (2016); DOI:org/10.1016/j.calphad.2016.05.002.

  41. P. J. M. Gielisse and W. R. Foster, “The System Al2O3–B2O3," Nature 195, 69–70 (1962); DOI:10.1038/195069a0.

  42. D. L. Hildenbrand, L. P. Theard, and A. M. Saul, “Transpiration and Mass Spectrometric Studies of Equilibria Involving BOF(g) and (BOF)3(g)," J. Chem. Phys. 39 1973–1978 (1963); DOI:10.1063/1.1734569.

  43. T. M. Souza, A. P. Luz, and V. C. Pandolfelli, “Magnesium Fluoride Role on Alumina–Magnesia Cement-Bonded Castables," Ceram. Int. 40 (9), 14947–14956 (2014); DOI:10.1016/j.ceramint.2014.06.092.

  44. S. Li and R. Jin, “Improvement of Combustion Characteristics of Solid Propellant with Coated Boron," in 35th Int. Propuls. Conf. Exhibit., Los Angeles (AIAA, 1999); DOI:10.2514/6.1999-2633.

  45. N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007); http://doi.wiley.com/10.1002/ 9783527610105.

  46. Y. Birol, “Aluminothermic Reduction of Boron Oxide for the Manufacture of Al–B Alloys," Mater. Chem. Phys. 136963–966 (2012); DOI:10.1016/j.matchemphys.2012.08.030.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pivkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivkina, A.N., Meerov, D.B., Monogarov, K.A. et al. Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and Their Compounds on the Thermal Behavior of Boron Oxide. Combust Explos Shock Waves 56, 148–155 (2020). https://doi.org/10.1134/S0010508220020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508220020057

Keywords

Navigation