Skip to main content
Log in

Stretching of the Laminar Flame in a Weak Electric Field

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An approach to studying the influence of the electric field on the flame with separate consideration of the effects of curving and extending of the plane flame is proposed. The degree of deformation can be used as a factor determining the action efficiency. Based on the results obtained by combined application of particle image velocimetry and spectral zonal registration, the change in the degree of deformation of the flame of a Bunsen-type burner located between flat electrodes is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. I. Barmina, A. Cipijs, J. Valdmanis, R. Valdmanis, M. Zake, “Electric Field Effect on Biomass Combustion Characteristics,"in14th Int. Scient. Conf. “Engineering for Rural Development", (20–22.05.2015, Jelgava, Latvia). P. 516–521.

  2. Jianfeng Fang, Xiaomin Wu, Hao Duan, Chao Li, Zhongquan Gao, “Effects of Electric Fields on the Combustion Characteristics of Lean Burn Methane-Air Mixtures," Energies 8, 2587–2605 (2015). DOI:10.3390/en8042587.

  3. A. V. Tupikin, P. K. Tretyakov, N. V. Denisova, et al., “Diffusion Flame in an Electric Field with a Variable Spatial Configuration," Fiz. Goreniya Vzryva 52 (2), 49–53 (2016) [Combust., Explos. Shock Waves 52 (2), 167–171 (2016)].

  4. M. V. Tran, M. S. Cha, “Propagating Nonpremixed Edge-Flames in a Counterflow, Annular Slot Burner under DC Electric Fields," Combust. Flame 173, 114–122 (2016).

  5. Dae Geun Park, Suk Ho Chung, Min Suk Cha, “Bidirectional Ionic wind in Nonpremixed Counterflow Flames with DC Electric Fields," Combust. Flame 168, 138–146 (2016).

  6. Salvador Paulo Roberto, Xu Kunning Gabriel, “Effects of DC Electric Fields on the Combustion of a Simplified Multi-Element Injector," AIAA Paper No. 2017-1585 (2017).

  7. Yuan Xiong, Suk Ho Chung, Min Suk Cha, “A Parametric Study of AC Electric Field-Induced Toroidal Vortex Formation in Laminar Nonpremixed Coflow Flames," Combust. Flame 182, 142–149 (2017).

  8. A. V. Tupikin, P. K. Tretyakov, and V. S. Venediktov, “Stabilization of a Lifted Diffusion Hydrocarbon Flame by an External Periodic Electric Field," Fiz. Goreniya Vzryva 53(1), 38–42 (2017) [Combust., Explos. Shock Waves 53 (1), 32–35 (2017)].

  9. S. M. Reshetnikov, I. A. Zyryanov, A. G. Budin, I. S. Reshetnikov, “Hybrid Rocket Engine Control by the Electrostatic Field," J. Eng. Sci. Technol. Rev. 11 (1), 146–150 (2018).

  10. H. F. Colcote, “Mechanism of the Formation of Ions of Flames," Combust. Flame 1, 385–403 (1957).

  11. E. M. Stepanov and B. G. D’yachkov, Ionization in the Flame and Electric Field (Metallurgiya, Moscow, 1968) [in Russian].

  12. J. Lawton and F. J. Weinberg, Electrical Aspects of Combustion (Clarendon Press, Oxford, 1969).

  13. D. A. Yagodnikov and A. V. Voronetskii, “Effect of an External Electrical Field on Ignition and Combustion Processes," Fiz. Goreniya Vzryva 30 (3), 3–12 (1994) [Combust., Explos., Shock Waves 30 (3), 261–268 (1994)].

  14. T. J. C. Dolmansley, Ch. W. Wilson, D. A. Stone, “Electrical Modification of Combustion and the Affect of Electrode Geometry on the Field Produced," Model. Simul. Eng. 2011 (2011). Article No. 8. http://dx.doi.org/10.1155/2011/676428.

  15. N. A. Isaev, “Mechanism of the Influence of Strong Electric Fields on the Flame," in Physics of Combustion and Methods of its Investigation (collected scientific papers), 1973, No. 3, pp. 58–73.

  16. R. I. Golyatina and S. A. Maiorov, “Characteristics of the Drift of Electrons in a Constant Electric Field for Inert Gases," Prikl. Fiz., No. 5, 22–27 (2011).

  17. P. K. Tretyakov, A. V. Tupikin, N. V. Denisova, et al., “Laminar Propane–Air Flame in a Weak Electric Field," Fiz. Goreniya Vzryva 48 (2), 9–14 (2012) [Combust., Explos., Shock Waves 48 (2), 130–135 (2012)].

  18. A. M. Klimov, “Laminar Flame in a Turbulent Flow," Prikl. Mekh. Tekh. Fiz., No. 3, 49–58 (1963).

  19. B. Karlovitz, D. W. Denniston Jr., D. H. Knapschaefer, F. E. Wells, “Studies on Turbulent Flames: A. Flame Propagation Across Velocity Gradients. B. Turbulence Measurement in Flames," Proc. Symp. (Int.) Combust. 4 (1), 613–620 (1953).

  20. R. A. Strehlow, L. D. Savage, “The Concept of Flame Stretch," Combust. Flame 31, 209–211 (1978).

  21. K. O. Sabdenov, O. Yu. Dolmatov, and K. V. Yushitsin, “On Elucidation of the Nature of the Concentration Limit of Combustion," Izv. Tomsk. Politekh. Univ. 311 (4), 36–40 (2007).

  22. Nonsteady Flame Propagation, Ed. by G. Marckstein, Oxford (1964).

  23. F. A. Williams, “A Review of Some Theoretical Considerations of Turbulent Flame Structure," AGARD Conf. Proc., No 164, 1–25 (1975).

  24. S. H. Chung, C. K. Law, “An Invariant Derivation of Flame Stretch," Combust. Flame 55, 123–125 (1984).

  25. V. V. Zamashchikov, “Flame Deformation," Polzunovskii Vestn., No. 1, 165–169 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tupikin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tupikin, A.V., Zamashchikov, V. Stretching of the Laminar Flame in a Weak Electric Field. Combust Explos Shock Waves 56, 125–130 (2020). https://doi.org/10.1134/S001050822002001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822002001X

Keywords

Navigation