Skip to main content
Log in

Sound Velocity in Shock-Compressed Samples from a Mixture of Micro- and Nanodispersed Nickel and Aluminum Powders

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Sound velocity variation behind a shock wave front is measured in pressed samples of micro- and nanodispersed mixtures of nickel and aluminum powders at pressures of 10, 30, and 60 GPa in order to verify the possibility of a reaction with the formation of nickel aluminide in a submicrosecond time range. It is shown that, in a pressure range of up to 60 GPa, the sound velocity in the samples from a nanodispersed mixture is higher than in the samples from a mi-crodispersed mixture. Moreover, upon reaching 60 GPa, the sound velocities in both mixtures with account for errors are practically equalized, which is related to melting of the samples. Based on the data obtained, it is concluded that there is no noticeable progress of the Ni + Al reaction during less than 1 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Zhukov, V. V. Yakushev, S. Yu. Ananev, et al., “Investigation of Nickel Aluminide Formed Due to Shock Loading of Aluminum–Nickel Mixtures in Flat Recovery Ampoules,” Fiz. Goreniya Vzryva 54 (1), 72–80 (2018) [Combust., Expl., Shock Waves 54 (1), 64–71 (2018)].

    Google Scholar 

  2. S. Yu. Ananev, A. A. Deribas, A. A. Drozdov, et al., “Dynamic Compaction of Ni and Al Micron Powder Blends in Cylindrical Recovery Scheme,” J. Phys.: Conf. Ser. 653 (1), 12037–12040 (2015).

    Google Scholar 

  3. F. X. Jetté, A. J. Higgins, S. Goroshin, et al., “In-Situ Measurements of the Onset of Bulk Exothermicity in Shock Initiation of Reactive Powder Mixtures,” J. Appl. Phys. 109 (8), 084905 (2011).

    Article  ADS  Google Scholar 

  4. V. V. Yakushev, S. Yu. Ananev, A. V. Utkin, et al., “Shock Compressibility of Mixtures of Micro- and Nano-Sized Nickel and Aluminum Powders,” Fiz. Goreniya Vzryva 54 (5), 45–50 (2018) [Combust., Expl., Shock Waves 54 (5), 552–557 (2018)].

    Google Scholar 

  5. D. Eakins and N. N. Thadhani, “Shock-Induced Reaction in a Flake Nickel + Spherical Aluminum Powder Mixture,” J. Appl. Phys. 100 (11), 113521 (2006).

    Article  ADS  Google Scholar 

  6. I. Song and N. N. Thadhani, “Shock-Induced Chemical Reactions and Synthesis of Nickel Aluminides,” Metallurg. Trans. A 23 (1), 41–48 (1992).

    Article  ADS  Google Scholar 

  7. A. V. Utkin, S. I. Torunov, V. P. Efremov, and V. E. Fortov, “Shock Compressibility of a Zn + S Mixture with Different Dispersity of Zinc,” in Physics of Extreme States of Matter, XXI Int. Conf. (Inst. of Problems of Chem. Phys., Russian Acad. of Sci., Chernogolovka, 2006) [in Russian].

    Google Scholar 

  8. R. G. McQueen, J. W. Hopson, and L. N. Fritz, “Optical Technique for Determining Rarefaction Wave Velocities at Very High Pressures,” Rev. Sci. Instr. 53 (2), 245–250 (1982).

    Article  ADS  Google Scholar 

  9. Methods for Studying the Properties of Materials at In-tense Dynamic Loads Ed. M. V. Zhernokletov (VNIIEF, Sarov, 2003) [in Russian].

  10. V. V. Yakushev, A. V. Utkin, V. V. Milyavskii, et al., “Shock Compressibility of C60 Fullerite,” in VII Khariton Scientific Readings: Proc. of the Int. Conf. (VNIIEF, Sarov, 2005) [in Russian].

    Google Scholar 

  11. V. Yakushev, A. Utkin, and A. Zhukov, “Porous Silicon Nitride under Shock Compression,” in Shock Compres-sion of Condensed Matter, AIP Conf. Proc., Vol. 1426 (2012).

  12. A. N. Zhigach, M. L. Kuskov, I. O. Leipunskii, et al., “Manufacture of Ultrafine Powder Metal Powders, Alloys, and Metal Compounds by the Gen–Miller Method: History, Modern State, and Prospects,” Ross. Nanotekhnol. 7 (3/4), 28–37 (2012).

    Google Scholar 

  13. B. R. Gafarov, A. V. Utkin, S. V. Razorenov, et al., “Front Structure of a Weak Shock Wave in Dense Composites,” Prikl. Mekh. Tekh. Fiz. 40 (3), 161 (1999) [J. Appl. Mech. Tech. Phys. 40 (3), 501–506 (1999)].

    Google Scholar 

  14. J. N. Fritz et al., “Overdriven-Detonation and SoundSpeed Measurements in PBX-9501 and the Thermodynamic Chapman–Jouguet Pressure,” J. Appl. Phys. 80 (11), 6129–6141 (1996).

    Article  ADS  Google Scholar 

  15. A. Yu. Dolgoborodov and I. M. Voskoboinikov, “Sound Velocities in Shock-Compressed Corundum, Boron Carbide, and Silicon Carbide,” Zh. Tekh. Fiz. 63 (2), 203–208 (1993).

    Google Scholar 

  16. P. Lazor, G. Shen, and S. K. Saxena, “Laser-Heated Dia-mond Anvil Cell Experiments at High Pressure: Melting Curve of Nickel up to 700 kbar,” Phys. Chem. Miner. 20 (2), 86–90 (1993).

    Article  ADS  Google Scholar 

  17. R. Boehler and M. Ross, “Melting Curve of Aluminum in a Diamond Cell to 0.8 Mbar: Implications for Iron,” Earth Planet. Sci. Lett. 153 (3), 223–227 (1997).

    Article  ADS  Google Scholar 

  18. Physical Quantities, Ed. by I. S. Grigor’eva and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].

  19. R. I. L. Guthrie and T. Iida, “Thermodynamic Properties of Liquid Metals,” Mater. Sci. Eng. A 178 (1/2), 35–41 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yakushev.

Additional information

Original Russian Text © V.V. Yakushev, S.Yu. Anan’ev, A.V. Utkin, A.N. Zhukov, A.Yu. Dolgoborodov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushev, V.V., Anan’ev, S.Y., Utkin, A.V. et al. Sound Velocity in Shock-Compressed Samples from a Mixture of Micro- and Nanodispersed Nickel and Aluminum Powders. Combust Explos Shock Waves 55, 732–738 (2019). https://doi.org/10.1134/S0010508219060157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219060157

Keywords

Navigation