Skip to main content
Log in

Electrical Resistance of Copper at High Pressures and Temperatures: Equilibrium Model and Generation of Defects of the Crystal Structure under Shock Compression

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A simple phenomenological model of electrical resistance of metals at high pressures and temperatures is considered on the basis of the Bloch-Griineisen equation of electrical resistance and Mie-Gruneisen equation of state. Two free parameters of the model for copper are found through comparisons of model predictions with experimental data on isothermal compression and isobaric heating. The dependence of the specific electrical resistance of copper on the shock pressure in the range up to 20 GPa is determined on the basis of experiments including measurements of electrical conductivity of foil samples. Comparisons of the experimental shock wave results with the formulated model reveal the difference in the specific electrical resistance values. It is proposed to attribute the observed difference between the model and experimental results to the nonequilibrium nature of the physical state under shock compression, leading to generation of defects of the crystal structure of the metal. The electrical resistance component caused by the crystal structure defects is identified, and its dependence on the shock pressure is determined. The concentration of point defects in shock-compressed copper is estimated. The contribution of defects to electrical resistance of the shock-compressed metal is found to increase with increasing pressure. This effect should be taken into account in determining the equilibrium specific electrical conductivity and the derivatives of the physical variables (e.g., thermal conductivity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman, “Electrical Conductivity of Dielectrics in Strong Shock Waves,” Zh. Eksp. Teor. Fiz. 38(1), 22–25 (1960).

    Google Scholar 

  2. D. L. Styris and G. E. Duvall, “Electrical Conductivity of Materials under Shock Compression,” High Temp. High Pressures 2(5), 477–499 (1970).

    Google Scholar 

  3. R. N. Keeler, “Electrical Conductivity of Condensed Media at High Pressures,” in Physics of High Energy Density, Ed. by P. Caldirola and H. Knoepfel (Academic Press, New York, 1971).

    Google Scholar 

  4. V. V. Yakushev, “Electrical Measurement in a Dynamic Experiment,” Fiz. Goreniya Vzryva 14(2), 3–19 (1978) [Combust., Expl., Shock Waves 14(2), 131–145 (1978)].

    ADS  Google Scholar 

  5. Methods of Studying Material Properties under Intense Dynamic Loading, Ed. by M. V. Zhernokletov (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2003) [in Russian].

    Google Scholar 

  6. S. D. Gilev, “Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review),” Fiz. Goreniya Vzryva 47(4), 3–23 (2011) [Combust., Expl., Shock Waves 47(4), 375–393 (2011)].

    Google Scholar 

  7. J. E. Wong, R. K. Linde, and P. S. De Carli, “Dynamic Electrical Resistivity of Iron: Evidence for a New High Pressure Phase,” Nature 219, 713 (1968).

    Article  ADS  Google Scholar 

  8. M. N. Pavlovskii, “Electrical Resistance of Shock-Compressed Ytterbium,” Zh. Eksp. Teor. Fiz. 73(1), 237–245 (1977).

    Google Scholar 

  9. W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum Metallic Conductivity of Fluid Hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. B 59(5), 3434–3449 (1999).

    Article  ADS  Google Scholar 

  10. M. A. Mochalov, V. D. Glukhodedov, S. I. Kirshanov, and T. S. Lebedeva, “Electric Conductivity of Liquid Argon, Krypton and Xenon under Shock Compression up to Pressure of 90 GPa,” in Shock Compression of Condensed Matter-1999, Ed. by M. D. Furnish, L. C. Chhabildas, and R. S. Hixon (AIP Press, 2000), pp. 983–986. (AIP Conf. Proc., Vol. 505.)

  11. V. E. Fortov, V. V. Yakushev, K. L. Kagan, et al., “Lithium at Dynamic Pressure,” J. Phys.: Condens. Matter 14, 10809–10816 (2002).

    ADS  Google Scholar 

  12. S. D. Gilev and A. M. Trubachev, “Metallization of Silicon in a Shock Wave: Metallization Threshold and Ultrahigh Defect Densities,” J. Phys.: Condens. Matter 16(46), 8139–8153 (2004).

    ADS  Google Scholar 

  13. S. D. Gilev and V. S. Prokop’ev, “Electrical Resistance of Copper under Shock Compression: Experimental Data,” Fiz. Goreniya Vzryva 52(1), 121–130 (2016) [Combust., Expl., Shock Waves 52(1), 107–116 (2016)].

    Google Scholar 

  14. E. Yu. Tonkov and E. G. Ponyatovsky, Phase Transformations of Elements under High Pressure (CRC Press, 2005).

  15. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, 1960).

  16. M. Gurvitch, “Ioffe-Regel Criterion and Resistivity of Metals,” Phys. Rev. B 24(12), 7404–7407 (1981).

    Article  ADS  Google Scholar 

  17. A. Eiling and J. S. Schilling, “Pressure and Temperature Dependence of the Electrical Resistivity of Pb and Sn from 1–300 K and 0–10 GPa—Use as Continuous Resistance Pressure Monitor Accurate over Wide Temperature Range; Superconductivity under Pressure in Pb, Sn and In,” J. Phys. F.: Metal. Phys. 11, 623–639 (1981).

    Article  ADS  Google Scholar 

  18. A. W. Lawson, “The Effect of Hydrostatic Pressure on the Electrical Resistivity of Metals,” Prog. Met. Phys. 6, 1–44 (1956).

    Article  Google Scholar 

  19. F. N. Pu, Y. Z. Ding, and Q. Q. Guo, “The Pressure-Dependence of Electrical Resistances for Iron, Nickel and Copper,” Science in China (Scientia Sinica), Ser. A: Math., Phys., Astron. 36(3), 333–337 (1993).

    Google Scholar 

  20. S. D. Gilev, “Few-Parameter Equation of State of Copper,” Fiz. Goreniya Vzryva 54(4), 107–122 (2018) [Combust., Expl., Shock Waves 54(4), 482–495 (2018)].

    Google Scholar 

  21. R. A. Matula, “Electrical Resistivity of Copper, Gold, Palladium, and Silver,” J. Phys. Chem. Ref. Data 8(4), 1147–1298 (1979).

    Article  ADS  Google Scholar 

  22. O. A. Shmatko and Yu. V. Usov, Electrical and Magnetic Proper-ties of Metals and Alloys: Reference Book (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  23. Physical Quantities: Reference Book, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  24. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].

    Google Scholar 

  25. R. G. McQueen, S. P. Marsh, J. W. Taylor, et al., “The Equation of State of Solids from Shock Wave Studies,” in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic Press, New York, 1970).

    Google Scholar 

  26. A. C. Mitchell and R. N. Keeler, “The Electrical Conductivity of Copper and Aluminum at High Temperatures and Pressures,” in: Megagauss Technology and Pulsed Power Applications, Proc. 4th Int. Conf. on Megagauss Magnetic Fields Generation and Related Topics, Santa Fe, 1986, Ed. by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum Press, New York-London, 1987), pp. 317–321.

    Google Scholar 

  27. Yan Bi, Hua Tan, and Fuqian Jing, “Electrical Conductivity of Iron under Shock Compression up to 200 GPa,” J. Phys.: Condens. Matter. 14, 10849–10854 (2002).

    ADS  Google Scholar 

  28. A. M. Molodets and A. A. Golyshev, “Thermal Conductivity of Indium at High Pressures and Temperatures of Shock Compression,” Fiz. Tv. Tela 51(2), 213–216 (2009).

    Google Scholar 

  29. A. A. Golyshev, D. V. Shakhray, V. V. Kim, et al., “High Temperature Resistivity of Shocked Liquid Sodium at Pressures up to 230 GPa,” Phys. Rev. B 83 094114 (2011).

    Article  ADS  Google Scholar 

  30. H. Gomi, K. Ohta, K. Hirose, et al., “The High Conductivity of Iron and Thermal Evolution of the Earth’s Core,” Phys. Earth Planet. Int. 224, 88–103 (2013).

    Article  ADS  Google Scholar 

  31. S. B. Kormer, “Optical Investigations of Shock-Compressed Dielectrics,” Usp. Fiz. Nauk 94(4), 641–687 (1968).

    Article  Google Scholar 

  32. R. A. Graham, Solids under High-Pressure Shock Compression (Springer-Verlag, New York, 1993).

    Book  Google Scholar 

  33. J. J. Dick and D. L. Styris, “Electrical Resistivity of Silver Foils under Uniaxial Shock-Wave compression,” J. Appl. Phys. 46(4), 1602–1617 (1975).

    Article  ADS  Google Scholar 

  34. H. C. Vantine, L. M. Erickson, and J. A. Janzen, “Hysteresis-Corrected Calibration of Manganin under Shock Loading,” J. Appl. Phys. 51(4), 1957–1962 (1980).

    Article  ADS  Google Scholar 

  35. A. C. Damask and G. J. Dienes, Point Defects in Metals (Gordon and Breach, New York, London, 1963).

    Google Scholar 

  36. Physical Metallurgy, Revised and Enlarged, Ed. by R. W. Cahn and P. Haasen (Amsterdam, 1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

Original Russian Text © S.D. Gilev.

Published in Fizika Goreniya i Vzryva, Vol. 55, No. 5, pp. 116–125, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, S.D. Electrical Resistance of Copper at High Pressures and Temperatures: Equilibrium Model and Generation of Defects of the Crystal Structure under Shock Compression. Combust Explos Shock Waves 55, 620–628 (2019). https://doi.org/10.1134/S0010508219050149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219050149

Keywords

Navigation