Skip to main content
Log in

Equation of State of TATB Based on Static and Dynamic Experiments

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An analytical model of the equation of state is developed based on theoretical ideas about the structure of TATB. ^The model is validated against experimental data obtained in static and dynamic experiments. The theoretically sound equation of state was used to match different experimental data in order to maximize the use of empirical information. It is expected that the use of the equation of state will increase the accuracy of the description of thermodynamic parameters of unreacted TATB in numerical simulations of shock-wave and detonation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, Equations of State of Matter: From Ideal Gas to Quark-Gluon Plasma (Fizmatlit, Moscow, 2013) [in Russian].

    MATH  Google Scholar 

  2. K. V. Khishchenko and V. E. Fortov, “Equations of State of Materials at High Energy Concentrations,” Izv. Kabardino-Balkarskogo Univ. IV (1), 6–16 (2014).

    Google Scholar 

  3. A. V. Bushman and V. E. Fortov, “Models of the Equation of State of Matter,” Usp. Fiz. Nauk 140 (2), 177–232 (1983).

    Article  ADS  Google Scholar 

  4. L. Kh. Badretdinova, O. V. Kostitsyn, E. B. Smirnov, A. V. Stankevich, K. A. Ten, and B. P. Tolochko, “Isothermal Compression of Triaminotrinitrobenzene Using Synchrotron Radiation,” Izv. Ross. Akad. Nauk, Ser. Fiz. 79 (1), 21 (2015).

    Article  Google Scholar 

  5. Yu. M. Kovalev, “Determination of the Type of Grüneisen Coefficient for Molecular Crystals,” Dokl. Akad. Nauk 403 (4), 475–477 (2005).

    MATH  Google Scholar 

  6. Yu. M. Kovalev, “Determination of the Type of the Elastic Component of Molecular Crystals,” Vestn. Chelyab. Gos. Univ., Ser. Mat., Mekh., Fiz. 9 (2), 55–63 (2017).

    MATH  Google Scholar 

  7. D. J. Pastine and R. R. Bernecker, “(P, v,E, T)- Equation of State for 1,3,5-triamino-2,4,6- trinitrobenzene,” J. Appl. Phys. 45 (10), 4458–4468 (1974).

    Article  ADS  Google Scholar 

  8. E. F. Byrd and B. M. Rice, “Ab Initio Study of Compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazcyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and pentaerythritol tetranitrate (PETN),” J. Phys. Chem. C III, 2787 (2007).

    Article  Google Scholar 

  9. K. F. Grebenkin and A. A. Zherebtsov, “Computational Modeling of TATB Shock-Wave Heating,” Fiz. Goreniya Vzryva 36 (2), 94–99 (2000) [Combust., Expl., Shock Waves 36 (2), 246–251 (2000)].

    Google Scholar 

  10. Yu. M. Kovalev, “Determination of the Temperature Dependence of the Isobaric Volumetric Expansion Coefficient for Some Molecular Crystals of Nitro Compounds,” Inzh.-Fiz. Zh. 91 (6), 1653–1663 (2018).

    Google Scholar 

  11. A. I. Kitaigorodskii, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  12. V. N. Zharkov and V. A. Kalinin, Equations of State of Solids at High Pressure and Temperature (Nauka, Moscow, 1968 [in Russian].

    Google Scholar 

  13. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973)

    Google Scholar 

  14. V. G. Shchetinin, “Calculation of the Heat Capacity of Organic Materials in Shock and Detonation Waves,” Khim. Fiz. 18 (5), 90–95 (1999).

    Google Scholar 

  15. Yu. M. Kovalev and V. F. Kuropatenko, “Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds,” Inzh.- Fiz. Zh. 91 (2), 297–306 (2018).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1987; Pergamon Press, 1980), Chapter I.

  17. T. M. Dobratz and P. C. Crawford, “LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants,” Report No. UCRL-52997, Change 2 (Lawrence Livermore National Laboratory, 1985).

    Google Scholar 

  18. T. Clark, A Handbook of Computational Chemistry (Wilew, New York, 1985).

    Google Scholar 

  19. N. F. Stepanov and Yu. V. Novakovskaya, “Quantum Chemistry Today,” Ross. Khim. Zh. LI(5), 5–17 (2007).

    Google Scholar 

  20. H. H. Cady and A. C. Larson, “The Crystal Structure of 1,3,5-triamino-2,4,6-trinitrobenzene,” Acta Cryst. 18, 485–496 (1965).

    Article  Google Scholar 

  21. A. V. Stankevich, E. B. Smirnov, O. V. Kostitsyn, et al., “Anisotropic Thermal Expansion of the Molecular Crystal of 1,3,5-triamino-2,4,6-trinitrobenzene at Normal Pressure,” in Use of Synchrotron and Terahertz Radiation to Study Energetic Materials (Inst. of Nucl. Phys., Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2015), pp. 46–49.

    Google Scholar 

  22. B. Olinger and H. Cady, “Hydrostatic Compression of Explosives and Detonation Products to 10 GPa (100 kbars) and Their Calculated Shock Compression: Results for PETN, TATB, CO2, and H2O,” in Detonation and Explosives (Mir, Moscow, 1981), pp. 203–219 [Russian translation].

    Google Scholar 

  23. L. L. Stevens, N. Velisavljevic, D. E. Hooks, and D. M. Dattelbaum, “Hydrostatic Compression Curve for Triamino-Trinitrobenzene Determined to 13.0 GPa with Powder X-ray Diffraction,” Propell., Explos., Pyrotech. 33(4), (2008).

    Google Scholar 

  24. E. V. Shorohov and, B. V. Litvinov, “Hugoniot Adiabate of Plasticized TATB-Based Explosive Compositions,” in Shock Waves and Marseille III (Springer Verlag, Berlin-Heidelberg, 1995).

    Google Scholar 

  25. E. B. Smirnov, A. N. Averin, B. G. Loboiko, O. V. Kostitsyn, Yu. A. Belenovsky, A. V. Lebedev, V. N. Scherbakov, K. M. Prosvirnin, A. N. Kiselev, K. V. Eganov, V. M. Volkov, and V. V. Kozel, “Shock Compressibility of Low-Sensitive HE of Different Initial Porosity,” in 15th Int. Detonation Symp., San Francisco, July 13–18, 2014.

    Google Scholar 

  26. T. R. Gibbs and A. Popolato, LASL Explosive Property Data (Univ. of California Press, Berkeley-Los Angeles- London, 1980). (Los Alamos Series on Dynamic Material Properties.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Biryukova.

Additional information

Original Russian Text © M.A. Biryukova, D.V. Petrov, A.Yu. Garmashev, A.K. Muzyrya, Yu.M. Kovalev, E.B. Smirnov, L.Kh. Badretdinova.

Published in Fizika Goreniya i Vzryva, Vol. 55, No. 4, pp. 51–59, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biryukova, M.A., Petrov, D.V., Garmashev, A.Y. et al. Equation of State of TATB Based on Static and Dynamic Experiments. Combust Explos Shock Waves 55, 418–425 (2019). https://doi.org/10.1134/S0010508219040075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219040075

Keywords

Navigation