Skip to main content
Log in

Dependences of the Burning Rate and Phase Composition of Condensed Products of a Ti + Ni Mixture on the Mechanical Activation Time

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A method of preliminary mechanical activation is used to implement the combustion of a Ti + Ni mixture, which does not burn at room temperature. The dependences of the burning rate, maximal temperature of combustion, and elongation of samples on the mechanical activation time of the Ti + Ni powder mixture are described for the first time. Moreover, the microstructure and phase composition of activated mixtures of their combustion products are studied. The mechanical activation time (9 min) during which the burning rate of the mixture and the content of the main phase (TiNi intermetallide) are maximal in the combustion products is experimentally determined. In these conditions, the combustion propagates within a narrow zone—the maximal temperature corresponds to that in the combustion front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Tikhonov, A. P. Gerasimov, and I. I. Prokhorova, Shape Memory Effect in Modern Machine Industry (Mashinostroenie, Moscow, 1981) [in Russian].

    Google Scholar 

  2. V. E. Gyunter, V. V. Kotenko, M. Z. Mirgazizov, et al., Alloys with Shape Memory in Medicine (Izd. Tom. Gos. Univ., Tomsk, 1986) [in Russian].

    Google Scholar 

  3. V. E. Gyunter, V. I. Itin, L. A. Monasevich, et al., Shape Memory Effects and Their Application in Medicine (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  4. V. I. Itin, T. V. Monasevich, and A. D. Bratchikov, “Effect of Mechanical Activation on the Regularities of Self-Propagating High-Temperature Synthesis in the Titanium-Nickel System,” Fiz. Goreniya Vzryva 33 (5), 48–51 (1997)

    Google Scholar 

  5. V. I. Itin, T. V. Monasevich, and A. D. Bratchikov, “Effect of Mechanical Activation on the Regularities of Self-Propagating High-Temperature Synthesis in the Titanium-Nickel System,” [Combust., Expl., Shock Waves 33 (5), 553–555 (1997)].

    Article  Google Scholar 

  6. V. I. Itin and Yu. S. Naiorodenko, High-Temperature Synthesis of Intermetallic Compounds (Izd. Tom. Univ., Tomsk, 1989) [in Russian].

    Google Scholar 

  7. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid?State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition,” Fiz. Goreniya Vzryva 39 (1), 51–59 (2003)

    Google Scholar 

  8. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid?State Combustion in Mechanically Activated SHS Systems. I. Effect of Activation Time on Process Parameters and Combustion Product Composition,” [Combust., Expl., Shock Waves 39 (1), 43–50 (2003)].

    Article  Google Scholar 

  9. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid?State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition,” Fiz. Goreniya Vzryva 39 (1), 60–68 (2003)

    Google Scholar 

  10. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., “Solid?State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition,” [Combust., Expl., Shock Waves 39 (1), 51–58 (2003)].

    Article  Google Scholar 

  11. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions,” Fiz. Goreniya Vzryva 51 (5), 77–86 (2015)

    Google Scholar 

  12. M. A. Korchagin, “Thermal Explosion in Mechanically Activated Low-Calorific-Value Compositions,”[Combust., Expl., Shock Waves 51 (5), 578–586 (2015)].

    Article  Google Scholar 

  13. M. A. Korchagin, V. Yu. Filimonov, E. V. Smirnov, and N. Z. Lyakhov “Thermal Explosion of a Mechanically Activated 3Ni-Al Mixture,” Fiz. Goreniya Vzryva 46 (1), 48–53 (2010)

    Google Scholar 

  14. M. A. Korchagin, V. Yu. Filimonov, E. V. Smirnov, and N. Z. Lyakhov “Thermal Explosion of a Mechanically Activated 3Ni-Al Mixture,” [Combust., Expl., Shock Waves 46 (1), 41–46 (2010)].

    Article  Google Scholar 

  15. N. A. Kochetov and B. S. Seplyarskii, “Dependence of Burning Rate on Sample Size in the Ni + Al System,” Fiz. Goreniya Vzryva 50 (4), 29–35 (2014)

    Google Scholar 

  16. N. A. Kochetov and B. S. Seplyarskii, “Dependence of Burning Rate on Sample Size in the Ni + Al System,” [Combust., Expl., Shock Waves 50 (4), 393–399 (2014)].

    Article  Google Scholar 

  17. N. A. Kochetov and S. G. Vadchenko, “Effect of the Time of Mechanical Activation of a Ti + 2B Mixture on Combustion of Cylindrical Samples and Thin Foils,” Fiz. Goreniya Vzryva 51 (4), 77–81 (2015)

    Google Scholar 

  18. N. A. Kochetov and S. G. Vadchenko, “Effect of the Time of Mechanical Activation of a Ti + 2B Mixture on Combustion of Cylindrical Samples and Thin Foils,” [Combust., Expl., Shock Waves 51 (4), 467–471 (2015)].

    Article  Google Scholar 

  19. B. S. Seplyarskii, N. A. Kochetov, and R. A. Kochetkov, “Impact of Mechanical Activation on the Burning Rate of Pressed and Bulk-Density Samples from a Ni + Al Mixture,” Fiz. Goreniya Vzryva 52 (3), 59–64 (2016)

    Google Scholar 

  20. B. S. Seplyarskii, N. A. Kochetov, and R. A. Kochetkov, “Impact of Mechanical Activation on the Burning Rate of Pressed and Bulk-Density Samples from a Ni + Al Mixture,” [Combust., Expl., Shock Waves 52 (3), 307–312 (2016)].

    Article  Google Scholar 

  21. N. A. Kochetov, “Combustion and the Characteristics of a Mechanically Activated Ni + Al Mixture. The Effect of Mass and Size of Grinding Bodies (Spheres),” Khim. Fiz. 35 (7), 49–54 (2016).

    Google Scholar 

  22. A. S. Rogachev and A. S. Mukas’yan, Combustion for Synthesizing Materials: Introduction to Structural Macrokinetics (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  23. V. Yu. Filimonov, M. A. Korchagin, and N. Z. Lyakhov, “Kinetics of Mechanically Activated High Temperature Synthesis of Ni3Al in the Thermal Explosion Mode,” Intermetallics 19, 833–840 (2011).

    Article  Google Scholar 

  24. N. A. Kochetov and B. S. Seplyarskii, “Combustion of a Ni + Al System at a Low Pressure of Ambient Gas,” Khim. Fiz. 36 (4), 50–55 (2017).

    Google Scholar 

  25. S. G. Vadchenko, “Gas Emission During Combustion of Mechanically Activated Ni + Al Mixtures,” Int. J. Self-Propag. High-Temp. Synth. 25 (4), 210–214 (2016).

    Article  Google Scholar 

  26. S. G. Vadchenko, “Gas Release During Combustion of Ti + 2B Films: Influence of Mechanical Alloying,” Int. J. Self-Propag. High-Temp. Synth. 24 (2), 90–93 (2015).

    Google Scholar 

  27. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

  28. A. P. Aldushin, T. M. Martem’yanova, A. G. Mer-zhanov, et al., “Propagation of the Front of an Exothermic Reaction in Condensed Mixtures with the Interaction of the Components through a Layer of High-Melting Product,” Fiz. Goreniya Vzryva 8 (2), 202–212 (1972)

    Google Scholar 

  29. A. P. Aldushin, T. M. Martem’yanova, A. G. Mer-zhanov, et al., “Propagation of the Front of an Exothermic Reaction in Condensed Mixtures with the Interaction of the Components through a Layer of High-Melting Product,” [Combust., Expl., Shock Waves 8 (2), 159–167 (1972)].

    Article  Google Scholar 

  30. A. G. Merzhanov and A. S. Mukas’yan, Solid-Flame Combustion (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  31. N. A. Kochetov and B. S. Seplyarskii, “Effect of Granulation, Mechanical Activation, Thermovacuum Treatment, and Pressure of Ambient Gas on the Synthesis of a Ti-0.5C System,” Izv. Vyyssh. Uchebn. Zaved., Porosh. Metallurg. Funkts. Pokr., No. 3, 4–13 (2017).

    Google Scholar 

  32. N. A. Kochetov and I. A. Studenikin, “Burning Rate and Sample Size Variation in a 5Ti + 3Si System. The Effect of Mechanical Activation, Thermovacuum Treatment, and Pressure of Ambient Gas,” Khim. Fiz. 37 (1), 43–48 (2018).

    Google Scholar 

  33. V. V. Skorokhod and S. M. Solonin, Physical and Metallurgical Fundamentals of Powder Sintering (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  34. A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, “Thermal Wave Structure in SHS Processes,” Fiz. Goreniya Vzryva 17 (1), 79–90 (1981)

    Google Scholar 

  35. A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, “Thermal Wave Structure in SHS Processes,” [Combust., Expl., Shock Waves 17 (1), 63–71 (1981)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kochetov.

Additional information

Original Russian Text © N.A. Kochetov, B.S. Seplyarskii, A.S. Shchukin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, N.A., Seplyarskii, B.S. & Shchukin, A.S. Dependences of the Burning Rate and Phase Composition of Condensed Products of a Ti + Ni Mixture on the Mechanical Activation Time. Combust Explos Shock Waves 55, 300–307 (2019). https://doi.org/10.1134/S0010508219030080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219030080

Keywords

Navigation