Skip to main content
Log in

Effects of Obstacles on the Passage of Filtering Combustion Waves along a Porous Titanium Tape

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the combustion of tapes in air, rolled from titanium powder, and the delay time of the combustion front motion in the presence of a one-sided obstacle, which limits the access of an oxidizer to the surface. It is shown that the combustion front is aligned with respect to the tape thickness at a long distance from the obstacle, which is two orders of magnitude larger than its thickness. The critical width of the two-sided obstacle is determined. The largest portion of the tape, where the front is aligned with respect to the tape thickness with the one-sided obstacle, and the small critical width of the two-sided obstacle are due to the surface combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Vadchenko, A. S. Rogachev, O. D. Boyarchenko, and Yu. A. Kulagin, “Method for Obtaining a Multilayer Tape for a Fuel Cell,” RF Patent No. 2 499 907 C1,” Registered and published November 27, 2013 (State Register of Inventions of the Russian Federation, 2013); Bul. No. 33.

    Google Scholar 

  2. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Combustion of Powdered Metals in Active Media (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  3. S. G. Vadchenko, I. P. Borovinskaya, and A. G. Merzhanov, “Solid Flame Combustion of Thin Films,” Dokl. Akad. Nauk 408 (1), 211–213 (2006).

    Google Scholar 

  4. N. N. Bakhman, G. P. Kuznetsov, and V. M. Puchkov, “Critical Conditions of the Combustion of Compressed Titanium Specimen,” Fiz. Goreniya Vzryva 34 (3), 50–55 (1998) [Combust., Expl., Shock Waves 34 (3), 292–297 (1998)].

    Google Scholar 

  5. B. G. Efimov and P. N. Kuzyaev, “Some Characteristics of the Combustion of Metals in an N2 + O2 Flow,” Fiz. Goreniya Vzryva 30 (6), 68–71 (1994) [Combust., Expl., Shock Waves 30 (6), 292–297 (1994)].

    Google Scholar 

  6. V. I. Bolobov, “Mechanism of Self-Ignition of Titanium Alloys in Oxygen,” Fiz. Goreniya Vzryva 38 (6), 37–45 (2002) [Combust., Expl., Shock Waves 38 (6), 639–645 (2002)].

    Google Scholar 

  7. V. I. Bolobov, “Ignition of Titanium During Fracture in Oxygen,” Fiz. Goreniya Vzryva 53 (2), 47–53 (2017) [Combust., Expl., Shock Waves 53 (2), 165–170 (2017)]; 10.15372/FGV20170206.

    Google Scholar 

  8. V. I. Bolobov, “Effect of Heat Transfer Conditions on the Critical Pressure of Metal Ignition in Oxygen,” Fiz. Goreniya Vzryva 52 (2), 54–59 (2016) [Combust., Expl., Shock Waves 52 (2), 172–176 (2016)]; 10.15372/FGV20160206.

    Google Scholar 

  9. E. V. Chernenko and A. L. Pivtsov, “Combustion Propagation of a Titanium Powder Surface,” Fiz. Goreniya Vzryva 26 (6), 68–74 (1990) [Combust., Expl., Shock Waves 26 (6), 684–689 (1990)].

    Google Scholar 

  10. P. M. Krishenik and S. V. Kostin, “Cellular and Heterogeneous Filtration Combustion Modes of Titanium in the Gravitational Force Field,” Fiz. Goreniya Vzryva 52 (3), 23–31 (2016) [Combust., Expl., Shock Waves 52 (3), 273–280 (2016)]; 10.15372/FGV20160303.

    Google Scholar 

  11. V. S. Berman, S. S. Novikov, and Yu. S. Ryazantsev, “Passage of a Combustion Wave Propagating on a Condensed Substance through an Inert Target,” Dokl. Akad. Nauk SSSR 211 (5), 1153–1155 (1973).

    Google Scholar 

  12. V. F. Proskudin, V. A. Golubev, P. G. Berezhko, et al., “Combustion-Wave Propagation Through an Inert Obstacle in Real Condensed Systems,” Fiz. Goreniya Vzryva 34 (6), 43–47 (1998) [Combust., Expl., Shock Waves 34 (6), 639–643 (1998)].

    Google Scholar 

  13. I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, and C. K. Law, “Phases Titanium Combustion in Air,” Combust. Flame 112 (4), 522–533 (1998).

    Article  Google Scholar 

  14. I. O. Khomenko, A. S. Mukas’yan, V. I. Ponomarev, et al., “Phase Formation Dynamics in Combustion of Metal-Gas Systems,” Dokl. Akad. Nauk SSSR 326 (4), 673–677 (1992).

    Google Scholar 

  15. A. P. Brovko and I. N. Bekman, “Study of Solid-Phase Transformations in Surface Layers of Titanium,” Izv. Akad. Nauk SSSR, Ser. Metally, No. 1, 95–98 (1982).

    Google Scholar 

  16. S. V. Kostin, P. M. Krishenik, and K. G. Shkadinskii, “Experimental Study of the Heterogeneous Filtration Combustion Mode,” Fiz. Goreniya Vzryva 50 (1), 49–58 (2014) [Combust., Expl., Shock Waves 50 (1), 42–50 (2014)].

    Google Scholar 

  17. A. S. Rogachev, F. Baras, and S. A. Rogachev, “Modes of Gasless Combustion and Macrostructure of Combustion Front (for the Ti-Si System As an Example),” Fiz. Goreniya Vzryva 45 (4), 147–155 (2009) [Combust., Expl., Shock Waves 45 (4), 478–485 (2009)].

    Google Scholar 

  18. Combustion Synthesis Chemistry, Ed. by M. Koidzumi (Mir, Moscow, 1998) [Russian translation].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Vadchenko.

Additional information

Original Russian Text © S.G. Vadchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadchenko, S.G. Effects of Obstacles on the Passage of Filtering Combustion Waves along a Porous Titanium Tape. Combust Explos Shock Waves 55, 282–288 (2019). https://doi.org/10.1134/S0010508219030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219030055

Keywords

Navigation