Mathematical Modeling of Premixed Counterflow Combustion of a Submicron-Sized Aluminum Dust Cloud

Abstract

The flame structure of submicron-sized aluminum dust particles and air is investigated through a two-phase mixture in a counterflow configuration. A mathematical model is developed to estimate the premixed dust flame location and velocity in terms of the strain rate. In order to simulate combustion of dust particles, a three-zone flame structure is considered, including the preheat, reaction, and post-flame zones. The governing conservation equations for each zone are derived and solved under appropriate boundary conditions. The effects of thermophoresis and Brownian motion of fuel particles are investigated. Moreover, the particle size and polydispersity impacts on the burning rate and flame position are taken into consideration. In general, the simulation results for the flame velocity are in reasonable agreement with the experimental data available in the literature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Russo, R. Li, M. Mench, and A. van Duin “Molecular Dynamic Simulation of Aluminum–Water Reactions Using the ReaxFF Reactive Force Field,” Int. J. Hydrogen Energy 36 (10), 5828–5835 (2011).

    Article  Google Scholar 

  2. 2.

    A. Ingenito and C. Bruno, “Using Aluminum for Space Propulsion,” J. Propul. Power 20 (6) 1056–1063 (2004).

    Article  Google Scholar 

  3. 3.

    K. Jayaraman, S. R. Chakravarthy, and R. Sarathi, “Accumulation of Nano-Aluminium during Combustion of Composite Solid Propellant Mixtures,” Fiz. Goreniya Vzryva 46 (1), 26–35 (2010) [Combust., Expl., Shock Waves 46 (1), 21–29 (2010)].

    Google Scholar 

  4. 4.

    C. Martin, M. Comet, F. Schnell, and J. Berthe, “Aluminum Nanopowder: A Substance to be Handled with Care,” J. Hazard. Mater. 342, 347–352 (2017).

    Article  Google Scholar 

  5. 5.

    G. Li, H. Yang, C. Yuan, and R. Eckhoff, “A Catastrophic Aluminium-Alloy Dust Explosion in China,” J. Loss Prevent. Process Ind. 39, 121–130 (2016).

    Article  Google Scholar 

  6. 6.

    S. Bernard, P. Gillard, and F. Frascati, “Ignition and Explosibility of Aluminium Alloys Used in Additive Layer Manufacturing,” J. Loss Prevent. Process Ind. 49, Part B, 888–895 (2017).

    Google Scholar 

  7. 7.

    W. Wu, L. Liu, and Q. Zhang, “A New 20 L Experimental Vessel for Dust Explosion and Measurement of Local Concentration,” J. Loss Prevent. Process Ind. 49, Part B, 299–309 (2017).

    Google Scholar 

  8. 8.

    E. L. Dreizin, “Experimental Study of Stages in Aluminium Particle Combustion in Air,” Combust. Flame 105 (4), 541–556 (1996).

    Article  Google Scholar 

  9. 9.

    M. W. Beckstead, A Summary of Aluminum Combustion (Brigham Young Univ., Provo, 2004).

    Google Scholar 

  10. 10.

    M. Filippo, S. Dossi, C. Paravan, et al., “Activated Aluminum Powders for Space Propulsion,” Powder Technol. 270, Part A, 46–52 (2015).

    Google Scholar 

  11. 11.

    D. S. Sundaram, V. Yang, and V. E. Zarko, “Combustion of Nano Aluminum Particles (Review),” Fiz. Goreniya Vzryva 51 (2), 37–63 (2015) [Combust., Expl., Shock Waves 51 (2), 173–196 (2016)].

    Google Scholar 

  12. 12.

    Q. Li, K. Wang, Y. Zheng, et al., “Explosion Severity of Micro-Sized Aluminum Dust and Its Flame Propagation Properties in 20 L Spherical Vessel,” Powder Technol. 301, 1299–1308 (2016).

    Article  Google Scholar 

  13. 13.

    M. Bidabadi, M. Mohammadi, A. K. Poorfar, et al., “Modeling Combustion of Aluminum Dust Cloud in Media with Spatially Discrete Sources,” Heat Mass Transfer. 51 (6), 837–845 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    R. Yetter, G. Risha, and S. Son, “Metal Particle Combustion and Nanotechnology,” Proc. Combust. Inst. 32 (2), 1819–1838 (2009).

    Article  Google Scholar 

  15. 15.

    F. Delogu, “Thermodynamics on the Nanoscale,” J. Phys. Chem. B 109 (46), 21938–21941 (2005).

    Article  Google Scholar 

  16. 16.

    Y. Kwon, A. Gromov, A. Ilyin, and E. Popenko, “The Mechanism of Combustion of Superfine Aluminum Powders,” Combust. Flame 133 (4), 385–391 (2003).

    Article  Google Scholar 

  17. 17.

    M. Zachariah, M. Aquino, R. Shull, and E. Steel, “Formation of Superparamagnetic Nanocomposites from Vapor Phase Condensation in a Flame,” Nanostructured Mater. 5, (4), 383–392 (1995).

    Article  Google Scholar 

  18. 18.

    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Combustion of Bimodal Nano/Micron-Sized Aluminum Particle Dust in Air,” Proc. Combust. Inst. 31 (2), 2001–2009 (2007).

    Article  Google Scholar 

  19. 19.

    D. Beck and R. Siegel, “The Dissociative Adsorption of Hydrogen Sulfide over Nanophase Titanium Dioxide,” J. Mater. Res. 7 (10), 2840–2845 (1992).

    ADS  Article  Google Scholar 

  20. 20.

    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air,” Combust. Flame 156 (1), 5–13 (2009).

    Article  Google Scholar 

  21. 21.

    P. Bocanegra, C. Chauveau, and I. G¨okalp, “Experimental Studies on the Burning of Coated and Uncoated Micro and Nano-Sized Aluminium Particles,” Aerosp. Sci. Technol. 11 (1), 33–38 (2007).

    Article  Google Scholar 

  22. 22.

    G. Risha, S. Son, R. Yetter, and V. Yang, “Combustion of Nano-Aluminum and Liquid Water,” Proc. Combust. Inst. 31 (2), 2029–2036 (2007).

    Article  Google Scholar 

  23. 23.

    P. Keblinski, S. Phillpot, and S. Choi, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer. 45 (4), 855–863 (2002).

    Article  MATH  Google Scholar 

  24. 24.

    A. Toda, H. Ohnishi, R. Dobashi, and T. Hirano, “Experimental Study on the Relation between Ther-mophoresis and Size of Aerosol Particles,” Int. J. Heat Mass Transfer. 41 (17), 2710–2713 (1998).

    Article  Google Scholar 

  25. 25.

    M. Bidabadi, M. Ramezanpour, M. Mohammadi, and J. Fereidooni, “The Effect of Thermophoresis on Flame Propagation in Nano-Aluminum and Water Mixtures,” Period. Polytech. Chem. Eng. 60 (3), 157–164 (2016).

    Article  Google Scholar 

  26. 26.

    H. Guo, Y. Ju, K. Maruta, et al., “Radiation Extinction Limit of Counterflow Premixed Lean Methane–Air Flames,” Combust. Flame 109 (4), 636–646 (1997).

    Article  Google Scholar 

  27. 27.

    M. Bidabadi, M. Vakilabadi, A. Poorfar, et al., “Mathematical Modeling of Premixed Counterflow Combustion of Organic Dust Cloud,” Renew. Energy 92, 376–384 (2016).

    Article  Google Scholar 

  28. 28.

    P. Julien, S. Whiteley, M. Soo, and S. Goroshin, “Flame Speed Measurements in Aluminum Suspensions Using a Counterflow Burner,” Proc. Combust. Inst. 36 (2) 2291–2298 (2017).

    Article  Google Scholar 

  29. 29.

    Y. Sun, R. Sun, B. Zhu, et al., “Combustion Characteristics of Nano-Aluminum Cloud in Different Atmospheres,” Ind. Eng. Chem. Res. 57 (1) 129–138 (2018).

    Article  Google Scholar 

  30. 30.

    W. Gao, X. Zhang, D. Zhang, et al., “Flame Propagation Behaviours in Nano-Metal Dust Explosions,” Powder Technol. 321, 154–162 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    M. Mohammadi, M. Bidabadi, and H. Khalili, “Modeling Counterflow Combustion of Dust Particle Cloud in Heterogeneous Media,” J. Energy Eng. 143 (2), (2017).

    Google Scholar 

  32. 32.

    S. M. Murshed and C. A. de Castro, “Predicting the Thermal Conductivity of Nanofluids—Effect of Brownian Motion of Nanoparticles,” J. Nanofluids 1 (2) 99–114 (2012).

    Google Scholar 

  33. 33.

    J. Sun, R. Dobashi, and T. Hirano, “Combustion Behavior of Iron Particles Suspended in Air,” Combust. Sci. Technol. 150 (1–6), 99–114 (2000).

    Article  Google Scholar 

  34. 34.

    M. Bidabadi, M. Mohebbi, A. K. Poorfar, et al., “Modeling Quenching Distance and Flame Propagation Speed through an Iron Dust Cloud with Spatially Random Distribution of Particles,” J. Loss Prevent. Process Ind. 43, 138–146 (2016).

    Article  Google Scholar 

  35. 35.

    T. L. Bergman and F. P. Incropera, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2011).

    Google Scholar 

  36. 36.

    M. Bidabadi, S. Zadsirjan, and S. Mostafavi, “Propagation and Extinction of Dust Flames in Narrow Channels,” J. Loss Prevent. Process Ind. 26 (1), 172–176 (2013).

    Article  Google Scholar 

  37. 37.

    T. A. Marino, Numerical Analysis to Study the Effects of Solid Fuel Particle Characteristics on Ignition, Burning, and Radiative Emission (The George Washington Univ., 2008).

    Google Scholar 

  38. 38.

    E. Loth, T. O’Brien, M. Syamlal, and M. Cantero, “Effective Diameter for Group Motion of Polydisperse Particle Mixtures,” Powder Technol. 142 (2/3), 209–218 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Mohammadi.

Additional information

Original Russian Text © H. Khalili, S.A. Madani, M. Mohammadi, A.K. Poorfar, M. Bidabadi, P. Pendleton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalili, H., Madani, S.A., Mohammadi, M. et al. Mathematical Modeling of Premixed Counterflow Combustion of a Submicron-Sized Aluminum Dust Cloud. Combust Explos Shock Waves 55, 65–73 (2019). https://doi.org/10.1134/S0010508219010076

Download citation

Keywords

  • thermophoresis effect
  • Brownian motion
  • aluminum dust particles
  • flame structure
  • asymptotic solution.