Advertisement

Combustion, Explosion, and Shock Waves

, Volume 55, Issue 1, pp 65–73 | Cite as

Mathematical Modeling of Premixed Counterflow Combustion of a Submicron-Sized Aluminum Dust Cloud

  • H. Khalili
  • S. A. Madani
  • M. MohammadiEmail author
  • A. K. Poorfar
  • M. Bidabadi
  • P. Pendleton
Article
  • 19 Downloads

Abstract

The flame structure of submicron-sized aluminum dust particles and air is investigated through a two-phase mixture in a counterflow configuration. A mathematical model is developed to estimate the premixed dust flame location and velocity in terms of the strain rate. In order to simulate combustion of dust particles, a three-zone flame structure is considered, including the preheat, reaction, and post-flame zones. The governing conservation equations for each zone are derived and solved under appropriate boundary conditions. The effects of thermophoresis and Brownian motion of fuel particles are investigated. Moreover, the particle size and polydispersity impacts on the burning rate and flame position are taken into consideration. In general, the simulation results for the flame velocity are in reasonable agreement with the experimental data available in the literature.

Keywords

thermophoresis effect Brownian motion aluminum dust particles flame structure asymptotic solution. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Russo, R. Li, M. Mench, and A. van Duin “Molecular Dynamic Simulation of Aluminum–Water Reactions Using the ReaxFF Reactive Force Field,” Int. J. Hydrogen Energy 36 (10), 5828–5835 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Ingenito and C. Bruno, “Using Aluminum for Space Propulsion,” J. Propul. Power 20 (6) 1056–1063 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Jayaraman, S. R. Chakravarthy, and R. Sarathi, “Accumulation of Nano-Aluminium during Combustion of Composite Solid Propellant Mixtures,” Fiz. Goreniya Vzryva 46 (1), 26–35 (2010) [Combust., Expl., Shock Waves 46 (1), 21–29 (2010)].Google Scholar
  4. 4.
    C. Martin, M. Comet, F. Schnell, and J. Berthe, “Aluminum Nanopowder: A Substance to be Handled with Care,” J. Hazard. Mater. 342, 347–352 (2017).CrossRefGoogle Scholar
  5. 5.
    G. Li, H. Yang, C. Yuan, and R. Eckhoff, “A Catastrophic Aluminium-Alloy Dust Explosion in China,” J. Loss Prevent. Process Ind. 39, 121–130 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Bernard, P. Gillard, and F. Frascati, “Ignition and Explosibility of Aluminium Alloys Used in Additive Layer Manufacturing,” J. Loss Prevent. Process Ind. 49, Part B, 888–895 (2017).Google Scholar
  7. 7.
    W. Wu, L. Liu, and Q. Zhang, “A New 20 L Experimental Vessel for Dust Explosion and Measurement of Local Concentration,” J. Loss Prevent. Process Ind. 49, Part B, 299–309 (2017).Google Scholar
  8. 8.
    E. L. Dreizin, “Experimental Study of Stages in Aluminium Particle Combustion in Air,” Combust. Flame 105 (4), 541–556 (1996).CrossRefGoogle Scholar
  9. 9.
    M. W. Beckstead, A Summary of Aluminum Combustion (Brigham Young Univ., Provo, 2004).Google Scholar
  10. 10.
    M. Filippo, S. Dossi, C. Paravan, et al., “Activated Aluminum Powders for Space Propulsion,” Powder Technol. 270, Part A, 46–52 (2015).Google Scholar
  11. 11.
    D. S. Sundaram, V. Yang, and V. E. Zarko, “Combustion of Nano Aluminum Particles (Review),” Fiz. Goreniya Vzryva 51 (2), 37–63 (2015) [Combust., Expl., Shock Waves 51 (2), 173–196 (2016)].Google Scholar
  12. 12.
    Q. Li, K. Wang, Y. Zheng, et al., “Explosion Severity of Micro-Sized Aluminum Dust and Its Flame Propagation Properties in 20 L Spherical Vessel,” Powder Technol. 301, 1299–1308 (2016).CrossRefGoogle Scholar
  13. 13.
    M. Bidabadi, M. Mohammadi, A. K. Poorfar, et al., “Modeling Combustion of Aluminum Dust Cloud in Media with Spatially Discrete Sources,” Heat Mass Transfer. 51 (6), 837–845 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    R. Yetter, G. Risha, and S. Son, “Metal Particle Combustion and Nanotechnology,” Proc. Combust. Inst. 32 (2), 1819–1838 (2009).CrossRefGoogle Scholar
  15. 15.
    F. Delogu, “Thermodynamics on the Nanoscale,” J. Phys. Chem. B 109 (46), 21938–21941 (2005).CrossRefGoogle Scholar
  16. 16.
    Y. Kwon, A. Gromov, A. Ilyin, and E. Popenko, “The Mechanism of Combustion of Superfine Aluminum Powders,” Combust. Flame 133 (4), 385–391 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Zachariah, M. Aquino, R. Shull, and E. Steel, “Formation of Superparamagnetic Nanocomposites from Vapor Phase Condensation in a Flame,” Nanostructured Mater. 5, (4), 383–392 (1995).CrossRefGoogle Scholar
  18. 18.
    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Combustion of Bimodal Nano/Micron-Sized Aluminum Particle Dust in Air,” Proc. Combust. Inst. 31 (2), 2001–2009 (2007).CrossRefGoogle Scholar
  19. 19.
    D. Beck and R. Siegel, “The Dissociative Adsorption of Hydrogen Sulfide over Nanophase Titanium Dioxide,” J. Mater. Res. 7 (10), 2840–2845 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air,” Combust. Flame 156 (1), 5–13 (2009).CrossRefGoogle Scholar
  21. 21.
    P. Bocanegra, C. Chauveau, and I. G¨okalp, “Experimental Studies on the Burning of Coated and Uncoated Micro and Nano-Sized Aluminium Particles,” Aerosp. Sci. Technol. 11 (1), 33–38 (2007).CrossRefGoogle Scholar
  22. 22.
    G. Risha, S. Son, R. Yetter, and V. Yang, “Combustion of Nano-Aluminum and Liquid Water,” Proc. Combust. Inst. 31 (2), 2029–2036 (2007).CrossRefGoogle Scholar
  23. 23.
    P. Keblinski, S. Phillpot, and S. Choi, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer. 45 (4), 855–863 (2002).CrossRefzbMATHGoogle Scholar
  24. 24.
    A. Toda, H. Ohnishi, R. Dobashi, and T. Hirano, “Experimental Study on the Relation between Ther-mophoresis and Size of Aerosol Particles,” Int. J. Heat Mass Transfer. 41 (17), 2710–2713 (1998).CrossRefGoogle Scholar
  25. 25.
    M. Bidabadi, M. Ramezanpour, M. Mohammadi, and J. Fereidooni, “The Effect of Thermophoresis on Flame Propagation in Nano-Aluminum and Water Mixtures,” Period. Polytech. Chem. Eng. 60 (3), 157–164 (2016).CrossRefGoogle Scholar
  26. 26.
    H. Guo, Y. Ju, K. Maruta, et al., “Radiation Extinction Limit of Counterflow Premixed Lean Methane–Air Flames,” Combust. Flame 109 (4), 636–646 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Bidabadi, M. Vakilabadi, A. Poorfar, et al., “Mathematical Modeling of Premixed Counterflow Combustion of Organic Dust Cloud,” Renew. Energy 92, 376–384 (2016).CrossRefGoogle Scholar
  28. 28.
    P. Julien, S. Whiteley, M. Soo, and S. Goroshin, “Flame Speed Measurements in Aluminum Suspensions Using a Counterflow Burner,” Proc. Combust. Inst. 36 (2) 2291–2298 (2017).CrossRefGoogle Scholar
  29. 29.
    Y. Sun, R. Sun, B. Zhu, et al., “Combustion Characteristics of Nano-Aluminum Cloud in Different Atmospheres,” Ind. Eng. Chem. Res. 57 (1) 129–138 (2018).CrossRefGoogle Scholar
  30. 30.
    W. Gao, X. Zhang, D. Zhang, et al., “Flame Propagation Behaviours in Nano-Metal Dust Explosions,” Powder Technol. 321, 154–162 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    M. Mohammadi, M. Bidabadi, and H. Khalili, “Modeling Counterflow Combustion of Dust Particle Cloud in Heterogeneous Media,” J. Energy Eng. 143 (2), (2017).Google Scholar
  32. 32.
    S. M. Murshed and C. A. de Castro, “Predicting the Thermal Conductivity of Nanofluids—Effect of Brownian Motion of Nanoparticles,” J. Nanofluids 1 (2) 99–114 (2012).Google Scholar
  33. 33.
    J. Sun, R. Dobashi, and T. Hirano, “Combustion Behavior of Iron Particles Suspended in Air,” Combust. Sci. Technol. 150 (1–6), 99–114 (2000).CrossRefGoogle Scholar
  34. 34.
    M. Bidabadi, M. Mohebbi, A. K. Poorfar, et al., “Modeling Quenching Distance and Flame Propagation Speed through an Iron Dust Cloud with Spatially Random Distribution of Particles,” J. Loss Prevent. Process Ind. 43, 138–146 (2016).CrossRefGoogle Scholar
  35. 35.
    T. L. Bergman and F. P. Incropera, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2011).Google Scholar
  36. 36.
    M. Bidabadi, S. Zadsirjan, and S. Mostafavi, “Propagation and Extinction of Dust Flames in Narrow Channels,” J. Loss Prevent. Process Ind. 26 (1), 172–176 (2013).CrossRefGoogle Scholar
  37. 37.
    T. A. Marino, Numerical Analysis to Study the Effects of Solid Fuel Particle Characteristics on Ignition, Burning, and Radiative Emission (The George Washington Univ., 2008).Google Scholar
  38. 38.
    E. Loth, T. O’Brien, M. Syamlal, and M. Cantero, “Effective Diameter for Group Motion of Polydisperse Particle Mixtures,” Powder Technol. 142 (2/3), 209–218 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. ag 2019

Authors and Affiliations

  • H. Khalili
    • 1
  • S. A. Madani
    • 1
  • M. Mohammadi
    • 2
    Email author
  • A. K. Poorfar
    • 1
  • M. Bidabadi
    • 1
  • P. Pendleton
    • 3
  1. 1.Iran University of Science and Technology (IUST)Narmak, TehranIran
  2. 2.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.University of AdelaideAdelaideAustralia

Personalised recommendations