Skip to main content
Log in

Influence of the Strain Rate, Particle Size, and Equivalence Ratio on the Combustion of the Premixed Air–Aluminum Microparticle Mixture with a Counterflow Structure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effects of the strain rate, equivalence ratio, and particle diameter on the combustion of a mixture of aluminum microparticles with air under fuel-lean conditions are studied in the counterflow configuration with an approximate analytical perturbation method. The flame structure is assumed to consist of three zones: preheating, flame, and post-flame zones. Reasonable agreement between the current results and experimental data is obtained in terms of the flame temperature. The dimensionless ignition and ultimate flame temperatures, place of the flame starting point, and flame thickness are obtained as functions of the strain rate for different particle diameters and equivalent ratios. The results indicate that the ignition and ultimate flame temperatures and also the flame thickness decrease with increasing strain rate. With a decrease in the strain rate, the length of the preheating zone increases. With increasing particle diameter, the flame thickness increases, whereas the ignition and ultimate flame temperatures decrease. An increase in the equivalence ratio causes an increase in the ultimate flame temperature and reduction of the preheating zone and flame thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Brooks and M. W. Beckstead, “Dynamics of Aluminum Combustion,” J. Propul. Power 11, 769–780 (1995).

    Article  Google Scholar 

  2. M. K. King, “Aluminum Combustion in a Solid Rocket Motor Environment,” Proc. Combust. Inst. 32, 2107–2114 (2009).

    Article  Google Scholar 

  3. Y. Feng, Z. Xia, L. Huang, and X. Yan, “Experimental Investigation on the Combustion Characteristics of Aluminum in Air,” Acta Astronaut. 129, 1–7 (2016).

    Article  ADS  Google Scholar 

  4. J. F. Guery, I. S. Chang, et al., “Solid Propulsion for Space Applications: An Updated Roadmap,” Acta Astronaut 66, 201–219 (2010).

    Article  ADS  Google Scholar 

  5. E. L. Dreizin, “Experimental Study of Stages in Aluminium Particle Combustion in Air,” Combust. Flame 105, 541–556 (1996).

    Article  Google Scholar 

  6. J. Sun, R. Dobashi, and T. Hirano, “Structure of Flames Propagating through Aluminum Particles Cloud and Combustion Process of Particles,” J. Loss Prevent. Process Ind. 19, 769–773 (2006).

    Article  Google Scholar 

  7. Z. Chen and B. Fan, “Flame Propagation Through Aluminum Particle Cloud in a Combustion Tube,” J. Loss Prevent. Process Ind. 18, 13–19 (2005).

    Article  Google Scholar 

  8. A. P. Il’in, A. A. Gromov, V. I. Vereshchagin, et al., “Combustion of Ultrafine Aluminum in Air,” Fiz. Goreniya Vzryva 37 (6), 56–60 (2001) [Combust., Expl., Shock Waves 37 (6), 664–668 (2001)].

    Google Scholar 

  9. G. Joulin, “Asymptotic Analysis of Non-Adiabatic Flames, Heat Losses Towards Small Inert Particles,” Proc. Combust. Inst. 18, 1395–1404 (1981).

    Article  Google Scholar 

  10. Y. S. Kwon, A. A. Gromov, A. P. Il’in, et al., “The Mechanism of Combustion of Superfine Aluminum Powders,” Combust. Flame 133, 385–391 (2003).

    Article  Google Scholar 

  11. E. L. Dreizin, “On the Mechanism of Asymmetric Aluminum Particle Combustion,” Combust. Flame 117, 841–850 (1999).

    Article  Google Scholar 

  12. M. W. Beckstead, “Correlating Aluminum Burning Times,” Fiz. Goreniya Vzryva 41 (5), 55–69 (2005) [Combust., Expl., Shock Waves 41 (5), 533–546 (2005)].

    Google Scholar 

  13. E. L. Dreizin, “Experimental Study of Aluminum Particle Flame Evolution in Normal and Micro-Gravity,” Combust. Flame 116, 323–333 (1999).

    Article  Google Scholar 

  14. P. Julien, J. Vickery, S. Whiteley, et al., “Effect of Scale on Freely Propagating Flames in Aluminum Dust Clouds,” J. Loss Prevent. Process Ind. 36, 230–236 (2015).

    Article  Google Scholar 

  15. S. Goroshin, M. Bidabadi, and J. H. S. Lee, “Quenching Distance of Laminar Flame in Aluminum Dust Clouds,” Combust. Flame 105, 147–160 (1996).

    Article  Google Scholar 

  16. S. Goroshin, M. Kolbe, and J. H. S Lee, “Flame Speed in a Binary Suspension of Solid Fuel,” Proc. Combust. Inst. 28 (2), 2811–2817 (2000).

    Article  Google Scholar 

  17. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Particle Dust in Air,” Combust. Flame 156, 5–13 (2009).

    Article  Google Scholar 

  18. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Combustion of Bimodal Nano/Micron-Sized Aluminum Particle Dust in Air,” Proc. Combust. Inst. 31, 2001–2009 (2007).

    Article  Google Scholar 

  19. J. Daou, “Strained Premixed Flames: Effect of Heat-Loss, Preferential Diffusion and Reversibility of the Reaction,” Combust. Theory Model. 15, 437–454 (2011).

    Article  ADS  MATH  Google Scholar 

  20. R. W. Thatcher and E. AlSarairah, “Steady and Unsteady Flame Propagation in a Premixed Counterflow,” Combust. Theory Model. 11, 569–583 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. H. Y. Wang, W. H. Chen, and C. K. Law, “Extinction of Counterflow Diffusion Flames with Radiative Heat Loss and Nonunity Lewis Numbers,” Combust. Flame 148, 100–116 (2007).

    Article  Google Scholar 

  22. J. Camacho, A. V. Singh, W. Wang, et al., “Soot Particle Size Distributions in Premixed Stretch-Stabilized Flat Ethylene–Oxygen–Argon Flames,” Proc. Combust. Inst. 36 (1), 1001–1009 (2017).

    Article  Google Scholar 

  23. F. El-Mahallaway and S. El-Din Habik, Fundamentals and Technology of Combustion (Elsevier, 2002).

    Google Scholar 

  24. R. H. Rand and D. Armbruster, Perturbation Methods, Bifurcation Theory and Computer Algebra (Springer, 1987).

    Book  MATH  Google Scholar 

  25. A. H. Nayfeh, Introduction to Perturbation Techniques (John Wiley and Sons, 1993).

    MATH  Google Scholar 

  26. C. Badiola, R. J. Gill, and E. L. Dreizin, “Combustion Characteristics of Micron-Sized Aluminum Particles in Oxygenated Environments,” Combust. Flame 158, 2064–2070 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. Pourmohammad.

Additional information

Original Russian Text © Ya. Pourmohammad, M. Sabzpooshani.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 6, pp. 59–67, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmohammad, Y., Sabzpooshani, M. Influence of the Strain Rate, Particle Size, and Equivalence Ratio on the Combustion of the Premixed Air–Aluminum Microparticle Mixture with a Counterflow Structure. Combust Explos Shock Waves 54, 681–688 (2018). https://doi.org/10.1134/S0010508218060072

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218060072

Keywords

Navigation