Skip to main content
Log in

Initiating Aluminized High Explosives by Laser Radiation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A number of physical and chemical processes occurring under the action of a laser pulse in nanosized aluminum and aluminized explosives on the basis of fine-grained PETN and benzotrifuroxane along with estimates of the effect of aluminum of the explosive transformation dynamics in these explosives conclude that it is possible to initiate aluminized explosives by laser radiation. The estimated and experimental results show that the main source of hot spots capable of causing an explosive transformation in aluminized explosives under the action of a laser pulse can be a compression wave that forms as a result of rapid evaporation of a sufficient number of aluminum particles. It is shown experimentally that aluminized explosives based on fine-grained RDX and HMX can be initiated by a laser pulse whose source is no more powerful than that in the case of PETN and benzotrifuroxane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “Mechanism of Initiation of Condensed Explosives by Laser Radiation,” Fiz. Goreniya Vzryva 5 (4), 475–480 (1969) [Combust., Expl., Shock Waves 5 (4), 326–328 (1969)].

    Google Scholar 

  2. A. A. Volkova, A. D. Zinchenko, I. V. Sanin, et al., “Time Characteristics of Laser Initiation of PETN,” Fiz. Goreniya Vzryva 13 (5), 760–766 (1977) [Combust., Expl., Shock Waves 13 (5), 645–650 (1977)].

    Google Scholar 

  3. A. I. Bykhalo, E. V. Zhuzhukalo, N. G. Koval’skii, et al., “Initiation of PETN by High-Power Laser Radiation,” Fiz. Goreniya Vzryva 21 (4), 110–113 (1985) [Combust., Expl., Shock Waves 21 (4), 481–483 (1985)].

    Google Scholar 

  4. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., “Laser Initiation of PETN,” Fiz. Goreniya Vzryva 32 (4), 113–119 (1996) [Combust., Expl., Shock Waves 32 (4), 454–459 (1996)].

    Google Scholar 

  5. E. D. Aluker, A. G. Krechetov, and B. G. Loboiko, “Effect of Temperature on Laser Initiation of PETN,” Khim. Fiz. 27 (5), 67 (2008).

    Google Scholar 

  6. E. D. Aluker, A. G. Krechetov, A. Yu. Mitrofanov, et al., “Pre-Explosion Stage Duration in Laser Initiation of PETN,” Pis’ma Zh. Tekh. Fiz. 35 (22), 55–561 (2009).

    Google Scholar 

  7. E.D. Aluker, N. L. Aluker, and G. M. Belokurov, “Effectiveness of Laser Initiation of PETN and Its Absorption Spectra,” Khim. Fiz. 29 (1), 49 (2010).

    Google Scholar 

  8. B. P. Aduev, G. M. Belokurov, A. G. Krechetov, et al., “Sensitivity of a Mechanical Mixture of Pentaerythrite Tetranitrate and Ni-C Nanoparticles to Explosion Initiation by Laser Pulses,” Fiz. Goreniya Vzryva 45 (1), 68–72 (2009) [Combust., Expl., Shock Waves 45 (1), 59–63 (2009)].

    Google Scholar 

  9. B. P. Aduev and D. R. Nurmukhametov, “Effect of Additives of Nickel Monocarbide Nanoparticles on PETN Sensitivity to Laser Radiation,” Khim. Fiz. 28 (11), 50–53 (2008).

    Google Scholar 

  10. B. P. Aduev and D. R. Nurmukhametov, “Pressure of Explosive Decomposition Products of a Mixture of PETN and Nickel Monocarbide Nanoparticles in Pulsed Laser Initiation,” Khim. Fiz. 29 (1), 70–74 (2010).

    Google Scholar 

  11. V. N. German, A. K. Fisenko, and N. P. Khokhlov, “Laser Radiation Induced Detonation in HE Samples produced by Thermovacuum Deposition,” in Life Cycles of Energetic Materials Proc. (Fullerton, 1998).

    Google Scholar 

  12. D. V. Mil’chenko, V. A. Gubachev, L. A. Andreevskikh, et al., “Nanostructured Explosives Produced by Vapor Deposition: Structure and Explosive Properties,” Fiz. Goreniya Vzryva 51 (1), 96–101 (2015) [Combust., Expl., Shock Waves 51 (1), 80–85 (2015)].

    Google Scholar 

  13. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, et al., “Effect of Laser Radiation Absorption Efficiency on the Heating Temperature of Inclusions in Transparent Media,” Fiz. Goreniya Vzryva 48 (6), 54–58 (2012) [Combust., Expl., Shock Waves 48 (6), 705–708 (2012)].

    Google Scholar 

  14. B. P. Aduev and D. R. Nurmukhametov, “Effect of Additives of Ultrafine Al–C Particles on PETN Sensitivity to Laser Radiation,” Khim. Fiz. 30 (3), 63–65 (2011).

    Google Scholar 

  15. E. V. Vlasova, S. M. Bat’yanov, Yu. V. Sheikov, et al., “Results of Studies of Light-Sensitive Explosive Compositions on the Basis of Benzothiophene and [VDT] with Nanoaluminum Under Laser Radiation,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013).

    Google Scholar 

  16. Method for Manufacturing Light-Sensitive Explosive Decompositions and a Light Detonator Based on Them RF Patent No. 2637016 (December 15, 2017).

  17. J. F. Ready, Effects of High-Power Radiation (Academic Press, 1971).

    Google Scholar 

  18. V. I. Tarzhanov, “Preexplosion Phenomena in Prompt Initiation of Secondary Explosives (Review),” Fiz. Goreniya Vzryva 39 (6), 3–11 (2003) [Combust., Expl., Shock Waves 39 (6), 611–618 (2003)].

    Google Scholar 

  19. M. M. Kuklya, E. V. Stefanovich, and A. B. Kunz, “An Exitonic Mechanism of Detonation Initiation in Explosives,” J. Chem. Phys. 112 (7), 65 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Sheikov.

Additional information

Original Russian Text © Yu.V. Sheikov, S.M. Bat’yanov, O.N. Kalashnikova, O.M. Lukovkin, D.V. Mil’chenko, S.A. Vakhmistrov, A.L. Mikhailov.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 5, pp. 57–64, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikov, Y.V., Bat’yanov, S.M., Kalashnikova, O.N. et al. Initiating Aluminized High Explosives by Laser Radiation. Combust Explos Shock Waves 54, 563–569 (2018). https://doi.org/10.1134/S0010508218050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218050088

Keywords

Navigation