Skip to main content
Log in

Microstructure of Shocked Preheated Bismuth and Detection of Melting at Pressures of 1.6–2.4 GPa

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The structure of bismuth samples after shock-wave loading at pressures of 0.7–2.4 and 22–32 GPa was studied. Before loading, the samples were at room temperature or heated to 230–240°C. Loading by a pressure of 1.5–2 GPa at an initial temperature of 233–240°C led to a structural change in bismuth, indicating melting of the sample in the shock wave. The time of shock-wave loading was ≈0.7 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Methods for Studying the Properties of Materials under Intense Dynamic Loads, Ed. by M. V. Zhernokletov (Sarov, 2003) [in Russian].

  2. L. A. Gatilov, “Electrical Resistance of Shock-Compressed Lead,” in Behavior of Materials Subjected to Strong Shock Waves (Sarov, 2007), Vol. 2, pp. 231–234 [in Russian].

    Google Scholar 

  3. Yu. V. Batkov, V. N. German, R. S. Osipov, et al. “Melting of Lead in Shock Compression,” Prikl. Mekh. Tekh. Fiz., No. 1, 149–151 (1988) [J. Appl. Mech. Tech. Phys., No. 1, 139–141 (1988)].

    Google Scholar 

  4. E. Yu. Tonkov, Phase Transformations of Compounds at High Pressure (Moscow, 1988), Vol. 1 [in Russian].

  5. R. E. Duff and F. S. Minshall, “Investigation of a Shock-Induced Transition in Bismuth,” Phys. Rev. 108 (5), 1207 (1957).

    Article  ADS  Google Scholar 

  6. D. B. Larson, “A Shock-Induced Phase Transformation in Bismuth,” J. Appl. Phys. 38 (4), 1541 (1967).

    Article  ADS  Google Scholar 

  7. M. N. Pavlovskii and V. V. Kommissarov, “Phase Transformation of Bismuth in a Rarefaction Wave,” Zh. Eksp. Teor. Fiz. 83 (6), 2146–2151 (1982).

    Google Scholar 

  8. Z. Rozenberg, “Determination of the Dynamic Phase Ttransitions in Bismuth with In-material Manganine Gauges,” J. Appl. Phys. 56 (11), 3328–3329 (1984).

    Article  ADS  Google Scholar 

  9. J. P. Romain, “Phase Transformation in Bismuth under Shock Loading,” J. Appl. Phys. 45 (1), 135–139 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. I. Postnov and S. S. Nabatov, “Recording of Phase Transitions in Bi, Yb, and Sn under Isentropic Compression in a Dynamic Experiment,” in Proc. of IV All-Union Meeting on Detonation (Telavi, 1988), Vol. 1, pp. 70–75 [in Russian].

    Google Scholar 

  11. E. V. Shorokhov, “Shock Waves in Bismuth in the Region of Polymorphic Transformations under Loading by Sliding Detonation of Explosive,” in Proc. Int. Conf. Shock Waves in Condensed Media (Kiev, 2012), pp. 217–220 [in Russian].

    Google Scholar 

  12. E. V. Shorokhov, “Damping of Shock Waves in Bismuth,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), 456–460.

    Google Scholar 

  13. A. M. Podurets, V. V. Dorokhin, and R. F. Trunin, “x-ray Diffraction Study of Shock-Induced Phase Transformations in Zirconium and Bismuth,” Teplofiz. Vysok. Temp. 41 (2), 254–258 (2003).

    Google Scholar 

  14. A. M. Podurets, “Pulsed X-ray Diffraction Structure Study of Shocked Materials,” Usp. Fiz. Nauk 181 (4), 427–434 (2011).

    Article  Google Scholar 

  15. G. A. Cox, “A Multy-Phase Equation of State for Bismuth,” in Shock Compression of Condensed Matter-2007, Ed. by M. Elert, M. D. Furnish, R. Chau, N. Holmes, and J. Nguyen (2007), pp. 151–154.

    Google Scholar 

  16. O. Heuze, “Building of Equations of State with Numerous Phase Transitions—Application to Bismuth,” in Shock Compression of Solids-2005, Ed. by M. Furnish (2005), pp. 212–215.

    Google Scholar 

  17. R. F. Trunin, M. V. Zhernokletov, N. F. Kuznetsov, and V. V. Shutov, “Dynamic Compressibility of Molten and Cooled Metals,” Teplofiz. Vysok. Temp. 33 (2), 222–226 (1995).

    Google Scholar 

  18. J. N. Johnson, D. B. Hayes, and J. R. Asay, “Equation of State and Shock-Induced Transformation in Solid I–Solid II–Liquid Bismuth,” J. Phys. Chem. Solids 35, 501–515 (1974).

    Article  ADS  Google Scholar 

  19. J. R. Asay, “Shock-Induced Melting in Bismuth,” J. Appl. Phys. 45 (10), 4441–4452 (1974).

    Article  ADS  Google Scholar 

  20. J. R. Asay, “Shock Loading and Unloading in Bismuth,” J. Appl. Phys. 48 (7), 2832–2844 (1977).

    Article  ADS  Google Scholar 

  21. D. B. Hayes, “Wave Propagation in a Condensed Medium with N Transforming Phases: Application to Solid I–Solid II–Liquid Bismuth,” J. Appl. Phys. 46 (8), 3438–3443 (1975).

    Article  ADS  Google Scholar 

  22. J. D. Colvin, B. W. Reed, et al., “Microstructure Morphology of Shock-Induced Melt and Rapid Resolidification in Bismuth,” J. Appl. Phys. 101, 084906 (2007).

    Article  ADS  Google Scholar 

  23. J. D. Colvin, A. F. Jankowski, et al., “Role of Spall in Microstructure Evolution during Laser-Shock-Driven Rapid Undercooling and Resolidification,” J. Appl. Phys. 105, 014902 (2009).

    Article  ADS  Google Scholar 

  24. O. M. Ostrikov and S. N. Dub, “Influence of Loading Rate on the Mechanism of Plastic Deformation in Bismuth,” Zh. Tekh. Fiz. 71 (9), 139–141 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Podurets.

Additional information

Original Russian Text © A.N. Balandina, V.A. Burnashov, A.V. Voronin, S.Yu. Kalinkin, A.L. Mikhailov, A.M.Podurets, V.G. Simakov, I.A. Tereshkina, M.I. Tkachenko, I.R. Trunin, E.E. Shestakov.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 5, pp. 27–34, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandina, A.N., Burnashov, V.A., Voronin, A.V. et al. Microstructure of Shocked Preheated Bismuth and Detection of Melting at Pressures of 1.6–2.4 GPa. Combust Explos Shock Waves 54, 535–542 (2018). https://doi.org/10.1134/S0010508218050040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218050040

Keywords

Navigation