Skip to main content
Log in

New Capabilities of Proton Radiography for Recording Fast Gas-Dynamic Processes

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

For about 15 years, studies of fast gas-dynamic processes have been conducted at the Logunov Institute of Experimental Physics (VNIIEF) of the Russian Federal Nuclear Center using the proton radiography system developed jointly with the Logunov Institute of High Energy Physics on the basis of a U-70 accelerator. The main advantages of flash proton radiography over widely used flash x-ray radiography are high spatial resolution, multiframe mode, transmission capability, dynamic range of recording, etc. In recent years, effort has continued to extend the capabilities of the proton radiography system by increasing the total time and recording field and supplementing it with additional diagnostic techniques and new explosion-proof chambers. This paper presents the results of studies that illustrate these capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Antipov, A. G. Afonin, A. V. Vasilevskii, et al., “A Radiographic Facility for the 70-GeV Proton Accelerator of the Institute for High Energy Physics,” Prib. Tekh. Eksp., No. 3, 5–12 (2010).

    Google Scholar 

  2. V. V. Burtsev, A. I. Lebedev, A. L. Mikhailov, et al., “Use of Multiframe Proton Radiography to Investigate Fast Hydrodynamic Processes,” Fiz. Goreniya Vzryva 47 (6), 16–28 (2011) [Combust., Expl., Shock Waves 47 (6), 627–638 (2011)].

    Google Scholar 

  3. V. V. Burtsev, A. L. Mikhailov, K. N. Panov, et al., “Initiation of Detonation in Explosives on an U-70 Proton Accelerator,” Fiz. Goreniya Vzryva 47 (3), 115–121 (2011) [Combust., Expl., Shock Waves 47 (3), 350–356 (2011)].

    Google Scholar 

  4. V. A. Arinin, V. V. Burtsev, A. L. Mikhailov, et al., “Experimental and Computational Study of Quasispherical Compression of a Copper Shell Loaded by the Detonation of a Plastic Explosive Layer,” Fiz. Goreniya Vzryva 51 (5), 112–120 (2015) [Combust., Expl., Shock Waves 51 (5), 611–618 (2015)].

    Google Scholar 

  5. V. V. Burtsev, K. N. Panov, A. V. Rudnev, and M. A. Syrunin, “Proton Radiographic Study of Detonation Initiation in TATB,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), pp. 74–81.

    Google Scholar 

  6. V. A. Arinin, A. V. Rudnev, M. A. Syrunin, and I. R. Trunin, “Spall Fracture of Copper with Spherical Convergence of Waves,” in Proc XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), pp. 507–515.

    Google Scholar 

  7. M. A. Syrunin, E. D. Vishnevetskii, V. A. Chernov, et al., “Explosion Protection Chamber,” RF Patent No. 2524064, Publ. 07.27.2014, Byul. No.21.

  8. A. V. Maksimov, N. E. Tyurin, and Yu. S. Fedotov, “Optical System of the Proton Bombarding Setup on the U-70 Accelerator at the Institute for High Energy Physics,” Zh. Tekh. Fiz. 84 (9), 132–139 (2014).

    Google Scholar 

  9. A. I. Andriyanov, A. G. Afonin, I. A. Gusev, O. V. Zyatkov, et al., “Startup of the Proton Radiographic Facility at the U-70 Accelerator,” Prib. Tekh. Eksp., No. 3, 61–68. (2016).

    Google Scholar 

  10. S. V. Avramenko, A. A. Loginov, A. A. Maksimov et al., “Multiturn Extraction of an Accelerated Beam from a U-70 Accelerator,” Prib. Tekh. Eksp., No. 3, 5–10 (2016).

    Google Scholar 

  11. M. A. Syrunin, V. A. Ogorodnikov, “Explosion-Proof Chambers for Investigation of Hydrodynamic Processes and Explosive Technologies,” Prib. Tekh. Eksp., No. 2, 5–13 (2015).

    Google Scholar 

  12. A. P. Tsoi, M. A. Syrunin, V. P. Kislinskii, et al., “Method and a Transport-Adjustment System for Delivery of an Explosion-Proof Chamber to the Place of Experiment,” RF Patent No. 2596858; Recorded in the state registry 08.15.2016.

  13. A. V. Fedorov, A. L. Mikhailov, S. A. Finyushin, et al., “Behavior of Lead under Shock-Wave Loading and Subsequent Unloading,” in Proc. XV Khariton Scientific Readings (VNIIEF, Sarov, 2013), pp. 274–282.

    Google Scholar 

  14. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, et al., “Measurement of Quasi-Isentropic Compressibility of Helium and Deuterium at Pressures of 1500–2000 GPa,” Zh. Eksp. Teor. Fiz. 142 (4), 696–711 (2012).

    Google Scholar 

  15. N. F. Gavrilov, G. G. Ivanova, V. I. Silin, and V. N. Sofronov, “UP-OK Code for Solving One-Dimensional Problems of the Mechanics of a Continuous Medium in a One-Dimensional Complex,” Vopr. Atom. Nauki Tekh., Ser. Metod. Prog. Chisl. Reshen. Zadach Mat. Fizs. 3/11, 11–14 (1982).

    Google Scholar 

  16. SESAME: Los Alamos National Laboratory of State Database, Group T-1, Ed. by S. P. Lyon, Los Alamos Nat. Lab. Document No. LA-UR-92-3407 (1992), p.1.

  17. V. P. Kopyshev and V. V. Khrustalev, “Equation of State of Hydrogen up to 10 Mbar,” J. Appl. Mech. Tech. Phys. 21, 122–128 (1980) [Prikl. Mekh. Tekh. Fiz. 21, 113–118 (1980)].

    Article  ADS  Google Scholar 

  18. V. D. Urlin, O. L. Mikhailova, and A. P. Tolochko, “Quasi-Isentropic Compression of Gaseous Argon by a Spherical Liner to 7 Mbar,” in Proc. III Khariton Scientific Readings (VNIIEF, Sarov, 2002), pp. 139–141.

    Google Scholar 

  19. O. L. Mikhailova, M. A. Mochalov, and V. D. Urlin, “Quasi-Isentropic Compression of Argon to 500 GPa,” Mat. Model. 4 (12), 162 (1992).

    Google Scholar 

  20. M. A. Mochalov, R. I. Il’kaev, E. V. Fortov, et al., “Thermodynamic Properties of Nonideal Helium Plasma under Quasi-Isentropic Compression by a Factor of 575 by a Pressure of 3 000 GPa,” Pisma Zh. Eksp. Teor. Fiz. 101 (8), 575–582 (2015).

    Google Scholar 

  21. A. V. Maksimov and Yu. S. Fedotov, “On the Possibility of Designing a Proton Microscope using a Radiography System Based on a U-70 Synchrotron,” Preprint No. 12 (Institute for High Energy Physics, Protvino, 2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Arinin.

Additional information

Original Russian Text © V.A. Arinin, S.A. Kartanov, Yu.P. Kuropatkin, A.I. Lebedev, A.L. Mikhailov, K.L. Mikhailyukov, V.A. Ogorodnikov, O.V. Oreshkov, K.N. Panov, M.A. Syrunin, M.V. Tatsenko, B.I. Tkachenko, I.A. Tkachenko, I.V. Khramov, A.P. Tsoi.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 5, pp. 3–12, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arinin, V.A., Kartanov, S.A., Kuropatkin, Y.P. et al. New Capabilities of Proton Radiography for Recording Fast Gas-Dynamic Processes. Combust Explos Shock Waves 54, 513–521 (2018). https://doi.org/10.1134/S0010508218050015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218050015

Keywords

Navigation