Abstract
A few-parameter equation of state in the Mie–Grüneisen form is proposed to describe shock compression of condensed matter. The equation is based on a postulated dependence of the Grüneisen coefficient on the specific volume and temperature Γ(V, T), which provides a qualitative description of compression of metal samples in strong shock waves. The curve of cold compression is found on the basis of the dependence Γ(V, T) with the use of a generalized formula for the Grüneisen function. Heat-induced oscillations of the crystal lattice are described in the Debye approximation. The resultant Grüneisen function has two free parameters. The values of other coefficients of the equation of state are determined from the reference data for matter under normal conditions and also from limiting values under extreme conditions. The model is tested by an example of copper. The derived equation of state describes the cold compression curve, normal isotherm, shock compressibility, as well as the copper unloading curves in density, pressure, and internal energy ranges for which experimental data are available. The thermodynamic characteristics of copper (isentropic modulus of volume compression, velocity of sound, Debye temperature, specific heat, linear expansion coefficient, and melting temperature) are calculated. Comparisons with available experimental data show that the proposed model, despite its simplicity, ensures a consistent description of a large array of experimental data in the region of high energy densities.
Similar content being viewed by others
References
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, Mineola–New York, 2002).
L. V. Al’tshuler, “Application of Shock Waves in High-Pressure Physics,” Usp. Fiz. Nauk 85 (2), 197–258 (1965).
V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Moscow, 1968; Consultants Bureau, New York, 1971).
A. V. Bushman and V. E. Fortov, “Models of Equations of State of Matter,” Usp. Fiz. Nauk 140 (2), 177–232 (1983).
B. K. Godwal, S. K. Sikka, R. Chidambaram, “Equation of State Theories of Condensed Matter up to about 10 TPa,” Phys. Rep. 102 (3), 121–197 (1983).
S. Eliezer, A. Ghatak, and H. Hora, Fundamentals of Equations of State (World Scientific, 2002).
V. E. Fortov, Equations of State of Matter from an Ideal Gas to Quark-Gluon Plasma (Fizmatlit, Moscow, 2012) [in Russian].
L. V. Al’tshuler, A. V. Bushman, M. B. Zhernokletov, et al., “Unloading Isentropes and Equations of State for Metals at High Energy Densities,” Zh. Eksp. Teor. Fiz. 78 (2), 741–760 (1980).
A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Thermophysics and Dynamics of Intense Pulse Actions (Inst. Chem. Phys., Acad. of Sci. of the USSR, Chernogolovka, 1988) [in Russian].
A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State for Metals at High Energy Densities (Inst. Chem. Phys., Acad. of Sci. of the USSR, Chernogolovka, 1992) [in Russian].
K. V. Khishchenko, V. E. Fortov, and I. V. Lomonosov, “Multiphase Equation of State for Carbon over Wide Range of Temperatures and Pressures,” Int. J. Thermophys. 26 (2), 479–491 (2005).
I. V. Lomonosov, “Multiphase Equation of State for Aluminum,” Laser and Particle Beams 25, 567–584 (2007).
D. G. Gordeev, L. F. Gudarenko, M. V. Zhernokletov, et al., “Semi-Empirical Equation of State of Metals. Equation of State of Aluminum,” Fiz. Goreniya Vzryva 44 (2), 61–75 (2008) [Combust., Expl., Shock Waves 44 (2), 177–189 (2008)].
D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin “Equation of State Model for Metals with Ionization Effectively Taken into Account. Equation of State of Tantalum, Tungsten, Aluminum, and Beryllium,” Fiz. Goreniya Vzryva 49 (1), 106–120 (2013) [Combust., Expl., Shock Waves 49 (1), 92–104 (2013)].
P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter 1 (11), 1941–1963 (1989).
M. Kumari and N. Dass, “An Equation of State Applied to Sodium Chloride and Caesium Chloride at High Pressures and High Temperatures,” J. Phys.: Condens. Matter 2 (14), 3219–3229 (1990).
M. Taravillo, V. G. Baonza, J. N´u˜nez, et al., “Simple Equation of State for Solids under Compression,” Phys. Rev. B 54, 7034–7045 (1996).
S. B. Roy and P. B. Roy, “An Equation of State Applied to Solid up to 1 TPa,” J. Phys.: Condens. Matter 11 (50), 10375–10390 (1999).
W. B. Holzapfel, “Equations of State and Thermophysical Properties of Solids under Pressure,” in High Pressure Crystallography, Ed. by A. Katrusiak and P. McMillan (Kluwer Academic Publ., Dordrecht, 2004), pp. 217–236.
J. X. Sun, Q. Wu, L. C. Cai, et al., “Equation of State for Solids with High Accuracy and Satisfying the Limitation Condition at High Pressure,” Physica B: Condens. Matter 371 (2), 257–271 (2006).
K. Nagayama, “New Method of Magnetic Flux Compression by Means of the Propagation of Shock-Induced Metallic Transition in Semiconductors,” Appl. Phys. Lett. 38 (2), 109–110 (1981).
S. D. Gilev and A. M. Trubachev, “Obtaining Strong Magnetic Fields by Using Shock Waves Applied to Matter,” Pis’ma Zh. Tekh. Fiz. 8 (15), 914–917 (1982).
E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Shock-Wave Method of Generating Megagauss Magnetic Fields,” Prikl. Mekh. Tekh. Fiz. 28 (3), 15–24 (1987) [J. Appl. Mech. Tech. Phys. 28 (3), 331–339 (1987)].
K. Nagayama and T. Mashimo, “Explosive-Driven Magnetic Flux Cumulation by the Propagation of Shock-Compressed Conductive Region in Highly Porous Metal Powders,” J. Appl. Phys. 61 (10), 4730–4735 (1987).
S. D. Gilev, “Model of Shock-Wave Magnetic Cumulation,” J. Phys., D: Appl. Phys. 42 (2), 025501 (2009).
S. D. Gilev, “Electrical Conductivity of Metal Powders under Shock Compression,” Fiz. Goreniya Vzryva 41 (5), 128–139 (2005) [Combust., Expl., Shock Waves 41 (5), 599–610 (2005)].
S. D. Gilev, “Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review),” Fiz. Goreniya Vzryva 47 (4), 3–23 (2011) [Combust., Expl., Shock Waves 47 (4), 375–393 (2011)].
A. M. Molodets, “Grüneisen Function and Zero Isotherm for Three Metals up to Pressures of 10 TPa,” Zh. Eksp. Teor. Fiz. 107 (3), 824–831 (1995).
A. M. Molodets, “Isochoric-Isothermal Potential and Thermodynamics of Shock Compression of Solids,” Khim. Fiz. 16 (9), 132–141 (1997).
E. I. Kraus, “Few-Parameter Equation of State for a Solid at High Energy Densities,” Vestnik NGU, Ser. Fiz. 2 (2), 65–73 (2007).
S. A. Kinelovskii and K. K. Maevskii, “Model of the Behavior of Aluminum and Aluminum-Based Mixtures under the Shock Wave Action,” Teplofiz. Vys. Temp. 52 (6), 843–851 (2014).
R. G. McQueen, S. P. Marsh, J. W. Taylor, et al., “The Equations of State of Solids from Shock-Wave Studies,” in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic Press, New York, 1971).
R. Boehler and J. Ramakrishnan, “Experimental Results on the pressure Dependence of the Grüneisen Parameter,” J. Geophys. Res., Ser. B 85 (B12), 6996–7002 (1980).
L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menkov, “Isotherms and Grüneisen Functions for 25 Metals,” Prikl. Mekh. Tekh. Fiz. 28 (1), 134–146 (1987) [J. Appl. Mech. Tech. Phys. 28 (1), 129–140 (1987)].
L. Burakovsky and D. L. Preston, “Analytic Model of the Grüneisen Parameter All Densities,” J. Phys. Chem. Solids 65 (8/9), 1581–1587 (2004).
V. V. Prut, “Semi-Empirical Model of the Equation of State for Condensed Media,” Teplofiz. Vysok. Temp. 43 (5), 713–726 (2005).
C.W. Greeff, J. C. Boettger, M. J. Graf, et al., “Theoretical Investigation of the Cu EOS Standard,” J. Phys. Chem. Solids 67 (9/10), 2033–2040 (2006).
S. B. Kormer, A. I. Funtikov, V. D. Urlin, and A. I. Kolesnikova, “Dynamic Compression of Porous Metals and Equation of State with a Variable Specific Heat at High Temperatures,” Zh. Eksp. Teor. Fiz. 42, 686–697 (1962).
A. T. Sapozhnikov and A. V. Pershina,. “Semi-Empirical Equation of State for Metals in Wide Ranges of Densities and Temperatures,” Vopr. Atomn. Nauki Tekh., Ser. Metod. Prog. Chisl. Resh. Zadach Mat. Fiz., No. 4 (6), 47–56 (1979).
V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].
L. F. Gudarenko, O. N. Gushchina, M. V. Zhernokletov, et al., “Shock Compression and Isentropic Expansion of Porous Samples of Tungsten, Nickel, and Tin,” Teplofiz. Vysok. Temp. 38 (3), 437–444 (2000).
K. V. Khishchenko, “Cold Curve and Caloric Equation of State for Copper,” in Physics of Extreme States of Matter-2004, Ed. by V. E. Fortov et al. (Chernogolovka, 2004), pp. 45–48 [in Russian].
K. V. Khishchenko, “Equation of State for Magnesium in the Range of High Pressures,” Pis’ma Zh. Tekh. Fiz. 30 (19), 65–71 (2004).
L. F. Gudarenko and S. N. Pryalov, “Approximation of Potential Pressure on the Basis of the Generalized Formula for the Grüneisen Coefficient,” Khim. Fiz. 18 (10), 52–59 (1999).
K. A. Gschneidner, “Physical Properties and Interrelationships of Metallic and Semimetallic Elements,” Solid State Phys. 16, 275–426 (1964).
I. N. Frantsevich, S. S. Voronov, and S. A. Bakuta, Elastic Constants and Moduli of Elasticity of Metals and Non-Metallic Materials: Reference Book (Naukova Dumka, Kiev, 1982) [in Russian].
N. N. Kalitkin and L. V. Kuz’mina, “Tables of Thermodynamic Functions of Matter at High Energy Concentrations,” Preprint No. 35 (Inst. Appl. Math, Acad. of Sci. of the USSR, Moscow, 1975).
F. Perrot, “Zero-Temperature Equation of State of Metals in the Statistical Model with Density Gradient Correction,” Physica A: Statistic. Mech. Appl. 98 (3), 555–565 (1979).
R. C. Albers, A. K. McMahan, and J. E. Müller, “Electronic and X-ray-Absorption Structure in Compressed Copper,” Phys. Rev. B 31, 3435–3450 (1985).
E. A. Kuz’menkov, “Composite Semi-Empirical Equations of State for Compressed Metals,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 6, 109–112 (1989).
W. J. Nellis, J. A. Moriarty, A. C. Mitchell, et al., “Metals Physics at Ultrahigh Pressure: Aluminum, Copper, and Lead as Prototypes,” Phys. Rev. Lett. 60, 1414–1417 (1988).
A. Dewaele, P. Loubeyre, and M. Mezouar, “Equations of State of Six Metals above 94 GPa,” Phys. Rev.. 70, 094112 (2004).
N. N. Kalitkin and L. V. Kuzmina, “Wide-Range Characteristic Thermodynamic Curves,” in Shock Waves and Extremal Conditions of Matter, Ed. by V. E. Fortov et al. (Springer, New York, 2004, pp. 109–176).
“Shock Wave Database,” https://doi.org/ihed.ras.ru/rusbank/.
Methods of Studying Material Properties under Intense Dynamic Loading, Eds. by M. V. Zhernokletov (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2003) [in Russian].
R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].
B. L. Glushak, A. P. Zharkov, M. V. Zhernokletov, et al., “Experimental Investigation of Thermodynamics of the Dense Plasma of Metals at High Energy Concentrations,” Zh. Eksp. Teor. Fiz. 96 (4(10)), 1301–1318 (1989).
Y. B. Liu, X. S. Li, Y. L. Feng, et al., “Thermodynamic Properties of Cu under High Pressure,” Physica B: Condens. Matter 394 (1), 14–17 (2007).
Physical Quantities: Reference Book, Ed. by I. S. Grigor’ev (Energoatomizdat, Moscow, 1991) [in Russian].
Thermophysical Properties of Matter, Vol. 4: Specific Heat-Metallic Elements and Alloys, Ed. by Y. S. Touloukian and E. H. Buyco (IFI/Plenum, New York–Washington, 1970).
L. V. Al’tshuler et al., “Isentropic Compressibility of Aluminum, Copper, Lead, and Iron at High Pressures,” Zh. Eksp. Teor. Fiz. 38, 1061–1073 (1960).
D. Hayes, R. S. Hixson, and R. G. McQueen, “High Pressure Elastic Properties, Solid–Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper,” in Shock Compression of Condensed Matter-1999 (Melville, New York, 2000), pp. 483–488; AIP Conf. Proc., Vol. 505.
S. M. Stishkov, “Thermodynamics of Melting of Simple Substances,” Usp. Fiz. Nauk 114 (1), 1–40 (1974).
H. Brand et al., “Melting Curve of Copper Measured to 16 GPa Using a Multi-Anvil Press,” High Pressure Res. 26 (3), 185–191 (2006).
S. Japel, B. Schwager, R. Boehler, and M. Ross, “Melting of Copper and Nickel at High Pressure: the Role of d Electrons,” Phys. Rev. Lett. 95, 167801 (2005).
J. A. Moriarty, “High-Pressure Ion-Thermal Properties of Metals from Ab Initio Interatomic Potentials,” in Shock Waves in Condensed Matter, Ed. by Y. M. Gupta (Plenum, New York, 1986, pp. 101–106).
A. B. Belonoshko, R. Ahuja, O. Eriksson, and B. Johansson, “Quasi Ab Initio Molecular Dynamic Study of Cu Melting,” Phys. Rev. B 61, 3838–3844 (2000).
L. Vocadlo, D. Alfe, G. D. Price, and M. J. Gillan, “Ab Initio Melting Curve of Copper by the Phase Coexistence Approach,” J. Chem. Phys. 120, 2872–2878 (2004).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.D. Gilev.
Published in Fizika Goreniya i Vzryva, Vol. 54, No. 4, pp. 107–122, July–August, 2018.
Rights and permissions
About this article
Cite this article
Gilev, S.D. Few-Parameter Equation of State of Copper. Combust Explos Shock Waves 54, 482–495 (2018). https://doi.org/10.1134/S0010508218040123
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0010508218040123