Skip to main content
Log in

Few-Parameter Equation of State of Copper

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A few-parameter equation of state in the Mie–Grüneisen form is proposed to describe shock compression of condensed matter. The equation is based on a postulated dependence of the Grüneisen coefficient on the specific volume and temperature Γ(V, T), which provides a qualitative description of compression of metal samples in strong shock waves. The curve of cold compression is found on the basis of the dependence Γ(V, T) with the use of a generalized formula for the Grüneisen function. Heat-induced oscillations of the crystal lattice are described in the Debye approximation. The resultant Grüneisen function has two free parameters. The values of other coefficients of the equation of state are determined from the reference data for matter under normal conditions and also from limiting values under extreme conditions. The model is tested by an example of copper. The derived equation of state describes the cold compression curve, normal isotherm, shock compressibility, as well as the copper unloading curves in density, pressure, and internal energy ranges for which experimental data are available. The thermodynamic characteristics of copper (isentropic modulus of volume compression, velocity of sound, Debye temperature, specific heat, linear expansion coefficient, and melting temperature) are calculated. Comparisons with available experimental data show that the proposed model, despite its simplicity, ensures a consistent description of a large array of experimental data in the region of high energy densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, Mineola–New York, 2002).

    Google Scholar 

  2. L. V. Al’tshuler, “Application of Shock Waves in High-Pressure Physics,” Usp. Fiz. Nauk 85 (2), 197–258 (1965).

    Google Scholar 

  3. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Moscow, 1968; Consultants Bureau, New York, 1971).

    Book  Google Scholar 

  4. A. V. Bushman and V. E. Fortov, “Models of Equations of State of Matter,” Usp. Fiz. Nauk 140 (2), 177–232 (1983).

    Article  ADS  Google Scholar 

  5. B. K. Godwal, S. K. Sikka, R. Chidambaram, “Equation of State Theories of Condensed Matter up to about 10 TPa,” Phys. Rep. 102 (3), 121–197 (1983).

    Article  ADS  Google Scholar 

  6. S. Eliezer, A. Ghatak, and H. Hora, Fundamentals of Equations of State (World Scientific, 2002).

    Book  MATH  Google Scholar 

  7. V. E. Fortov, Equations of State of Matter from an Ideal Gas to Quark-Gluon Plasma (Fizmatlit, Moscow, 2012) [in Russian].

    MATH  Google Scholar 

  8. L. V. Al’tshuler, A. V. Bushman, M. B. Zhernokletov, et al., “Unloading Isentropes and Equations of State for Metals at High Energy Densities,” Zh. Eksp. Teor. Fiz. 78 (2), 741–760 (1980).

    Google Scholar 

  9. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Thermophysics and Dynamics of Intense Pulse Actions (Inst. Chem. Phys., Acad. of Sci. of the USSR, Chernogolovka, 1988) [in Russian].

    Google Scholar 

  10. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State for Metals at High Energy Densities (Inst. Chem. Phys., Acad. of Sci. of the USSR, Chernogolovka, 1992) [in Russian].

    Google Scholar 

  11. K. V. Khishchenko, V. E. Fortov, and I. V. Lomonosov, “Multiphase Equation of State for Carbon over Wide Range of Temperatures and Pressures,” Int. J. Thermophys. 26 (2), 479–491 (2005).

    Article  ADS  Google Scholar 

  12. I. V. Lomonosov, “Multiphase Equation of State for Aluminum,” Laser and Particle Beams 25, 567–584 (2007).

    Article  Google Scholar 

  13. D. G. Gordeev, L. F. Gudarenko, M. V. Zhernokletov, et al., “Semi-Empirical Equation of State of Metals. Equation of State of Aluminum,” Fiz. Goreniya Vzryva 44 (2), 61–75 (2008) [Combust., Expl., Shock Waves 44 (2), 177–189 (2008)].

    Google Scholar 

  14. D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin “Equation of State Model for Metals with Ionization Effectively Taken into Account. Equation of State of Tantalum, Tungsten, Aluminum, and Beryllium,” Fiz. Goreniya Vzryva 49 (1), 106–120 (2013) [Combust., Expl., Shock Waves 49 (1), 92–104 (2013)].

    Google Scholar 

  15. P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter 1 (11), 1941–1963 (1989).

    ADS  Google Scholar 

  16. M. Kumari and N. Dass, “An Equation of State Applied to Sodium Chloride and Caesium Chloride at High Pressures and High Temperatures,” J. Phys.: Condens. Matter 2 (14), 3219–3229 (1990).

    ADS  Google Scholar 

  17. M. Taravillo, V. G. Baonza, J. N´u˜nez, et al., “Simple Equation of State for Solids under Compression,” Phys. Rev. B 54, 7034–7045 (1996).

    Article  ADS  Google Scholar 

  18. S. B. Roy and P. B. Roy, “An Equation of State Applied to Solid up to 1 TPa,” J. Phys.: Condens. Matter 11 (50), 10375–10390 (1999).

    Google Scholar 

  19. W. B. Holzapfel, “Equations of State and Thermophysical Properties of Solids under Pressure,” in High Pressure Crystallography, Ed. by A. Katrusiak and P. McMillan (Kluwer Academic Publ., Dordrecht, 2004), pp. 217–236.

    Chapter  Google Scholar 

  20. J. X. Sun, Q. Wu, L. C. Cai, et al., “Equation of State for Solids with High Accuracy and Satisfying the Limitation Condition at High Pressure,” Physica B: Condens. Matter 371 (2), 257–271 (2006).

    Article  Google Scholar 

  21. K. Nagayama, “New Method of Magnetic Flux Compression by Means of the Propagation of Shock-Induced Metallic Transition in Semiconductors,” Appl. Phys. Lett. 38 (2), 109–110 (1981).

    Article  ADS  Google Scholar 

  22. S. D. Gilev and A. M. Trubachev, “Obtaining Strong Magnetic Fields by Using Shock Waves Applied to Matter,” Pis’ma Zh. Tekh. Fiz. 8 (15), 914–917 (1982).

    Google Scholar 

  23. E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Shock-Wave Method of Generating Megagauss Magnetic Fields,” Prikl. Mekh. Tekh. Fiz. 28 (3), 15–24 (1987) [J. Appl. Mech. Tech. Phys. 28 (3), 331–339 (1987)].

    Google Scholar 

  24. K. Nagayama and T. Mashimo, “Explosive-Driven Magnetic Flux Cumulation by the Propagation of Shock-Compressed Conductive Region in Highly Porous Metal Powders,” J. Appl. Phys. 61 (10), 4730–4735 (1987).

    Article  ADS  Google Scholar 

  25. S. D. Gilev, “Model of Shock-Wave Magnetic Cumulation,” J. Phys., D: Appl. Phys. 42 (2), 025501 (2009).

    Article  ADS  Google Scholar 

  26. S. D. Gilev, “Electrical Conductivity of Metal Powders under Shock Compression,” Fiz. Goreniya Vzryva 41 (5), 128–139 (2005) [Combust., Expl., Shock Waves 41 (5), 599–610 (2005)].

    Google Scholar 

  27. S. D. Gilev, “Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review),” Fiz. Goreniya Vzryva 47 (4), 3–23 (2011) [Combust., Expl., Shock Waves 47 (4), 375–393 (2011)].

    Google Scholar 

  28. A. M. Molodets, “Grüneisen Function and Zero Isotherm for Three Metals up to Pressures of 10 TPa,” Zh. Eksp. Teor. Fiz. 107 (3), 824–831 (1995).

    Google Scholar 

  29. A. M. Molodets, “Isochoric-Isothermal Potential and Thermodynamics of Shock Compression of Solids,” Khim. Fiz. 16 (9), 132–141 (1997).

    Google Scholar 

  30. E. I. Kraus, “Few-Parameter Equation of State for a Solid at High Energy Densities,” Vestnik NGU, Ser. Fiz. 2 (2), 65–73 (2007).

    Google Scholar 

  31. S. A. Kinelovskii and K. K. Maevskii, “Model of the Behavior of Aluminum and Aluminum-Based Mixtures under the Shock Wave Action,” Teplofiz. Vys. Temp. 52 (6), 843–851 (2014).

    Google Scholar 

  32. R. G. McQueen, S. P. Marsh, J. W. Taylor, et al., “The Equations of State of Solids from Shock-Wave Studies,” in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic Press, New York, 1971).

    Google Scholar 

  33. R. Boehler and J. Ramakrishnan, “Experimental Results on the pressure Dependence of the Grüneisen Parameter,” J. Geophys. Res., Ser. B 85 (B12), 6996–7002 (1980).

    Article  ADS  Google Scholar 

  34. L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menkov, “Isotherms and Grüneisen Functions for 25 Metals,” Prikl. Mekh. Tekh. Fiz. 28 (1), 134–146 (1987) [J. Appl. Mech. Tech. Phys. 28 (1), 129–140 (1987)].

    Google Scholar 

  35. L. Burakovsky and D. L. Preston, “Analytic Model of the Grüneisen Parameter All Densities,” J. Phys. Chem. Solids 65 (8/9), 1581–1587 (2004).

    Article  ADS  Google Scholar 

  36. V. V. Prut, “Semi-Empirical Model of the Equation of State for Condensed Media,” Teplofiz. Vysok. Temp. 43 (5), 713–726 (2005).

    Google Scholar 

  37. C.W. Greeff, J. C. Boettger, M. J. Graf, et al., “Theoretical Investigation of the Cu EOS Standard,” J. Phys. Chem. Solids 67 (9/10), 2033–2040 (2006).

    Article  ADS  Google Scholar 

  38. S. B. Kormer, A. I. Funtikov, V. D. Urlin, and A. I. Kolesnikova, “Dynamic Compression of Porous Metals and Equation of State with a Variable Specific Heat at High Temperatures,” Zh. Eksp. Teor. Fiz. 42, 686–697 (1962).

    Google Scholar 

  39. A. T. Sapozhnikov and A. V. Pershina,. “Semi-Empirical Equation of State for Metals in Wide Ranges of Densities and Temperatures,” Vopr. Atomn. Nauki Tekh., Ser. Metod. Prog. Chisl. Resh. Zadach Mat. Fiz., No. 4 (6), 47–56 (1979).

    Google Scholar 

  40. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  41. L. F. Gudarenko, O. N. Gushchina, M. V. Zhernokletov, et al., “Shock Compression and Isentropic Expansion of Porous Samples of Tungsten, Nickel, and Tin,” Teplofiz. Vysok. Temp. 38 (3), 437–444 (2000).

    Google Scholar 

  42. K. V. Khishchenko, “Cold Curve and Caloric Equation of State for Copper,” in Physics of Extreme States of Matter-2004, Ed. by V. E. Fortov et al. (Chernogolovka, 2004), pp. 45–48 [in Russian].

    Google Scholar 

  43. K. V. Khishchenko, “Equation of State for Magnesium in the Range of High Pressures,” Pis’ma Zh. Tekh. Fiz. 30 (19), 65–71 (2004).

    Google Scholar 

  44. L. F. Gudarenko and S. N. Pryalov, “Approximation of Potential Pressure on the Basis of the Generalized Formula for the Grüneisen Coefficient,” Khim. Fiz. 18 (10), 52–59 (1999).

    Google Scholar 

  45. K. A. Gschneidner, “Physical Properties and Interrelationships of Metallic and Semimetallic Elements,” Solid State Phys. 16, 275–426 (1964).

    Article  Google Scholar 

  46. I. N. Frantsevich, S. S. Voronov, and S. A. Bakuta, Elastic Constants and Moduli of Elasticity of Metals and Non-Metallic Materials: Reference Book (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  47. N. N. Kalitkin and L. V. Kuz’mina, “Tables of Thermodynamic Functions of Matter at High Energy Concentrations,” Preprint No. 35 (Inst. Appl. Math, Acad. of Sci. of the USSR, Moscow, 1975).

    Google Scholar 

  48. F. Perrot, “Zero-Temperature Equation of State of Metals in the Statistical Model with Density Gradient Correction,” Physica A: Statistic. Mech. Appl. 98 (3), 555–565 (1979).

    Article  ADS  Google Scholar 

  49. R. C. Albers, A. K. McMahan, and J. E. Müller, “Electronic and X-ray-Absorption Structure in Compressed Copper,” Phys. Rev. B 31, 3435–3450 (1985).

    Article  ADS  Google Scholar 

  50. E. A. Kuz’menkov, “Composite Semi-Empirical Equations of State for Compressed Metals,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 6, 109–112 (1989).

    Google Scholar 

  51. W. J. Nellis, J. A. Moriarty, A. C. Mitchell, et al., “Metals Physics at Ultrahigh Pressure: Aluminum, Copper, and Lead as Prototypes,” Phys. Rev. Lett. 60, 1414–1417 (1988).

    Article  ADS  Google Scholar 

  52. A. Dewaele, P. Loubeyre, and M. Mezouar, “Equations of State of Six Metals above 94 GPa,” Phys. Rev.. 70, 094112 (2004).

    Google Scholar 

  53. N. N. Kalitkin and L. V. Kuzmina, “Wide-Range Characteristic Thermodynamic Curves,” in Shock Waves and Extremal Conditions of Matter, Ed. by V. E. Fortov et al. (Springer, New York, 2004, pp. 109–176).

    Google Scholar 

  54. “Shock Wave Database,” https://doi.org/ihed.ras.ru/rusbank/.

  55. Methods of Studying Material Properties under Intense Dynamic Loading, Eds. by M. V. Zhernokletov (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2003) [in Russian].

    Google Scholar 

  56. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter (Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].

    Google Scholar 

  57. B. L. Glushak, A. P. Zharkov, M. V. Zhernokletov, et al., “Experimental Investigation of Thermodynamics of the Dense Plasma of Metals at High Energy Concentrations,” Zh. Eksp. Teor. Fiz. 96 (4(10)), 1301–1318 (1989).

    Google Scholar 

  58. Y. B. Liu, X. S. Li, Y. L. Feng, et al., “Thermodynamic Properties of Cu under High Pressure,” Physica B: Condens. Matter 394 (1), 14–17 (2007).

    Article  ADS  Google Scholar 

  59. Physical Quantities: Reference Book, Ed. by I. S. Grigor’ev (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  60. Thermophysical Properties of Matter, Vol. 4: Specific Heat-Metallic Elements and Alloys, Ed. by Y. S. Touloukian and E. H. Buyco (IFI/Plenum, New York–Washington, 1970).

    Google Scholar 

  61. L. V. Al’tshuler et al., “Isentropic Compressibility of Aluminum, Copper, Lead, and Iron at High Pressures,” Zh. Eksp. Teor. Fiz. 38, 1061–1073 (1960).

    Google Scholar 

  62. D. Hayes, R. S. Hixson, and R. G. McQueen, “High Pressure Elastic Properties, Solid–Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper,” in Shock Compression of Condensed Matter-1999 (Melville, New York, 2000), pp. 483–488; AIP Conf. Proc., Vol. 505.

    Google Scholar 

  63. S. M. Stishkov, “Thermodynamics of Melting of Simple Substances,” Usp. Fiz. Nauk 114 (1), 1–40 (1974).

    Google Scholar 

  64. H. Brand et al., “Melting Curve of Copper Measured to 16 GPa Using a Multi-Anvil Press,” High Pressure Res. 26 (3), 185–191 (2006).

    Article  ADS  Google Scholar 

  65. S. Japel, B. Schwager, R. Boehler, and M. Ross, “Melting of Copper and Nickel at High Pressure: the Role of d Electrons,” Phys. Rev. Lett. 95, 167801 (2005).

    Google Scholar 

  66. J. A. Moriarty, “High-Pressure Ion-Thermal Properties of Metals from Ab Initio Interatomic Potentials,” in Shock Waves in Condensed Matter, Ed. by Y. M. Gupta (Plenum, New York, 1986, pp. 101–106).

    Chapter  Google Scholar 

  67. A. B. Belonoshko, R. Ahuja, O. Eriksson, and B. Johansson, “Quasi Ab Initio Molecular Dynamic Study of Cu Melting,” Phys. Rev. B 61, 3838–3844 (2000).

    Article  ADS  Google Scholar 

  68. L. Vocadlo, D. Alfe, G. D. Price, and M. J. Gillan, “Ab Initio Melting Curve of Copper by the Phase Coexistence Approach,” J. Chem. Phys. 120, 2872–2878 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

Original Russian Text © S.D. Gilev.

Published in Fizika Goreniya i Vzryva, Vol. 54, No. 4, pp. 107–122, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, S.D. Few-Parameter Equation of State of Copper. Combust Explos Shock Waves 54, 482–495 (2018). https://doi.org/10.1134/S0010508218040123

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218040123

Keywords

Navigation