Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 238–245 | Cite as

Ultrahigh Cooling Rates at the Interface of Explosively Welded Materials and Their Effect on the Formation of the Structure of Mixing Zones

  • I. A. Bataev
  • D. V. Lazurenko
  • Yu. N. Malyutina
  • A. A. Nikulina
  • A. A. Bataev
  • O. E. Mats
  • I. D. Kuchumova


Explosively welded metal plates are characterized by the formation of local microvolumes at the interlayer boundaries within which there is mixing of interacting materials. These microvolumes can be arranged discretely along wavy boundaries or continuously in the form of thin interlayers along planar boundaries. Based on the results of many published works, it has been shown that the material is melted in these zones, and its subsequent solidification occurs at a high rate leading to the formation of metastable phases. In this paper, the formation of metastable phases in steel–steel, Ta–steel, Nb–Al, and Zr–Cu joints is analyzed. The cooling rates of these materials in the mixing zones is estimated. Calculations show that the cooling rate of the melts formed in the weld zones of the investigated composites is in the range 103–106 K/s. Cooling of mixing zones at such high rates results in the formation of metastable structures. In some cases, the crystallization of materials is suppressed and metallic glasses and quasicrystalline phases are formed in the melt zones.


explosive welding high cooling rates metastable structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ferjutz and J. R. Davis, ASM Handbook, Vol. 6: Welding, Brazing, and Soldering (ASM Int., Materials Park, 1993).Google Scholar
  2. 2.
    A. A. Deribas, Physics of Hardening and Explosive Welding (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  3. 3.
    B. Crossland, Explosive Welding of Metals and Its Application (Clarendon Press, Oxford, 1982).Google Scholar
  4. 4.
    I. D. Zakharenko, Explosive Welding of Metals (Nauka Tekhnika, Minsk, 1990) [in Russian].Google Scholar
  5. 5.
    E. Akca and A. Gürsel, “Solid State Welding and Application in Aeronautical Industry,” Periodicals Eng. Natur. Sci. (PEN) 4 (1), 1–8 (2016).Google Scholar
  6. 6.
    I. A. Bataev, A. A. Bataev, V. I. Mali, V. A. Bataev, and I. A. Balaganskii, “Structural Changes in the Surface Layers of Steel Plates during Explosive Welding,” Metalloved. Term. Obr. Metal. 669 (9), 54–59 (2013).Google Scholar
  7. 7.
    I. A. Bataev, A. A. Bataev, V. I. Mali, V. G. Burov, and E. A. Prikhodko, “Formation and Structure of Vortex Zones Arising upon Explosion Welding of Carbon Steels,” Fiz. Metal. Metalloved. 113 (3), 247–254 (2012).Google Scholar
  8. 8.
    B. A. Grinberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, A. V. Inozemtsev, A. Yu. Volkova, S. V. Kuzmin, and V. I. Lysak, “Explosive Welding: Mixing of Metals without Mutual Solubility (Iron–Silver),” Fiz. Metal. Metalloved. 113 (11), 1099–1110 (2012).Google Scholar
  9. 9.
    B. Grinberg, M. Ivanov, and A. Plotnikov, “Interface in Explosive Welding: Expansion of Particles, Local Melting, and Mixing,” Vestn. Tambov. Univ., Ser. Estestv. Tekh. Nauki 18 (4), 1837–1839 (2013).Google Scholar
  10. 10.
    V. Lysak and S. Kuzmin, “Manufacture of of Large Bimetallic Sheets with a Corrosion-Resistant Layer by Explosive Welding,” Izv. Volg. Gos. Tekh. Univ. 147 (7), 4–15 (2014).Google Scholar
  11. 11.
    B. Wang, F. Xie, X. Luo, and J. Zhou, “Experimental and Physical Model of the Melting Zone in the Interface of the Explosive Cladding Bar,” J. Mater. Res. Technol. 5 (4), 333–338 (2016).CrossRefGoogle Scholar
  12. 12.
    S. A. A. Akbari Mousavi and P. Farhadi Sartangi, “Experimental Investigation of Explosive Welding of cp-Titanium/AISI 304 Stainless Steel,” Mater. Des. 30 (3), 459–468 (2009).CrossRefGoogle Scholar
  13. 13.
    M. Nishida, A. Chiba, Y. Morizono, M. Matsumoto, T. Murakami, and A. Inoue, “Formation of Nonequilibrium Phases at Collision Interface in an Explosively Welded Ti/Ni Clad,” Mater. Trans., JIM 36 (11), 1338–1343 (1995).CrossRefGoogle Scholar
  14. 14.
    M. Nishida, A. Chiba, Y. Honda, J.-I. Hirazumi, and K. Horikiri, “Electron Microscopy Studies of Bonding Interface in Explosively Welded Ti/Steel Clads,” SIJ Int. 35 (2), 217–219 (1995).Google Scholar
  15. 15.
    H. Paul, J. Morgiel, T. Baudin, F. Brisset, M. Prazmowski, and M. Miszczyk, “Characterization of Explosive Weld Joints by TEM and SEM/EBSD,” Arch. Metallurgy Mater. 59 (3), 1129–1136 (2014).Google Scholar
  16. 16.
    G. Zu, X. Li, J. Zhang, and H. Zhang, “Interfacial Characterization and Mechanical Property of Ti/Cu Clad Sheet Produced by Explosive Welding and Annealing,” J. Wuhan Univ. Technol., Mater. Sci. Ed. 30 (6), 1198–1203 (2015).CrossRefGoogle Scholar
  17. 17.
    I. A. Bataev, K. Hokamoto, H. Keno, A. A. Bataev, I. A. Balagansky, and A. V. Vinogradov, “Metallic Glass Formation at the Interface of Explosively Welded Nb and Stainless Steel,” Metals Mater. Int. 21 (4), 713–718 (2015).CrossRefGoogle Scholar
  18. 18.
    I. A. Bataev, T. S. Ogneva, A. A. Bataev, V. I. Mali, M. A. Esikov, D. V. Lazurenko, Y. Guo, and A. M. J. Jorge, “Explosively Welded Multilayer Ni–Al Composites,” Mater. Des. 88, 1082–1087 (2015).CrossRefGoogle Scholar
  19. 19.
    D. V. Lazurenko, I. A. Bataev, V. I. Mali, A. A. Bataev, I. N. Maliutina, V. S. Lozhkin, M. A. Esikov, and A. M. J. Jorge, “Explosively Welded Multilayer Ti–Al Composites: Structure and Transformation during Heat Treatment,” Mater. Des. 102, 122–130 (2016).CrossRefGoogle Scholar
  20. 20.
    I. D. Zakharenko, “Thermal State of the Weld Zone in Explosive Welding,” Fiz. Goreniya Vzryva 7 (2), 269–272 (1971) [Combust., Expl., Shock Waves 7 (2), 229–231 (1971)].Google Scholar
  21. 21.
    I. D. Zakharenko and T. M. Sobolenko, “Thermal Effects in the Weld Zone in Explosive Welding,” Fiz. Goreniya Vzryva 7 (3), 433–435 (1971) [Combust., Expl., Shock Waves 7 (3), 373–375 (1971)].Google Scholar
  22. 22.
    W. D. Liu, K. X. Liu, Q. Y. Chen, J. T. Wang, H. H. Yan, and X. J. Li, “Metallic Glass Coating on Metals Plate by Adjusted Explosive Welding Technique,” Appl. Surf. Sci. 255 (23), 9343–9347 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    B. Grinberg, M. Ivanov, V. Rybin, S. Kuzmin, V. Lysak, O. Elkina, A. Panzelov, O. Antonova, A. Inozemtsev, A. Volkova, and A. Plotnikov, “Dissipative Structures in Explosion Welding,” Izv. Volg. Gos. Tekh. Univ. 5 (14), 27–43 (2012).Google Scholar
  24. 24.
    A. Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys,” Acta Materialia 48 (1), 279–306 (2000).CrossRefGoogle Scholar
  25. 25.
    O. N. Senkov and D. B. Miracle, “Effect of the Atomic Size Distribution on Glass Forming Ability of Amorphous Metallic Alloys,” Mater. Res. Bull. 36 (12), 2183–2198 (2001).CrossRefGoogle Scholar
  26. 26.
    A. Takeuchi and A. Inoue, “Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-Regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys,” Intermetallics 18 (9), 1779–1789 (2010).CrossRefGoogle Scholar
  27. 27.
    W. Klement, R. H. Willens, and P. Duwez, “Non-Crystalline Structure in Solidified Gold-Silicon Alloys,” Nature 187 (4740), 869–870 (1960).ADSCrossRefGoogle Scholar
  28. 28.
    T. J. Ahrens, J. D. Bass, and J. R. Abelson, “Shock Temperatures in Metals,” in Shock Waves in Condensed Matter–1989 (Elsevier, New York, 1990), pp. 851–857.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Bataev
    • 1
  • D. V. Lazurenko
    • 1
  • Yu. N. Malyutina
    • 1
  • A. A. Nikulina
    • 1
  • A. A. Bataev
    • 1
  • O. E. Mats
    • 1
  • I. D. Kuchumova
    • 1
  1. 1.State Technical UniversityNovosibirskRussia

Personalised recommendations