Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 231–237 | Cite as

Use of Emulsion Explosives in Experimental Studies of Flows in the Bonding Zone in Explosive Welding

  • B. S. Zlobin
  • V. V. Kiselev
  • A. A. Shterzer
  • A. V. Plastinin
Article
  • 4 Downloads

Abstract

Bonding of steels of different hardness through a ductile layer was obtained by explosive welding using an emulsion explosive. In the bonding zone, two types of waves were found: large waves and small waves which have not been observed in previous experiments. Empirical relations for calculating the wave size are proposed that take into account the influence of the strength and density of the colliding materials on them. Cracking in the bonding zone can be avoided by reducing the wave size.

Keywords

emulsion explosives explosive welding low-ductility materials wave formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Sil’vestrov, A. V. Plastinin, and A. S. Yunoshev, “Loading of an Emulsion by High-Velocity Plate Impact,” Fiz. Goreniya Vzryva 52 (3), 114–118 (2016) [Combust., Expl., Shock Waves 52 (3), 358–362 (2016)].Google Scholar
  2. 2.
    N. P. Satonkina, E. R. Pruuel, A. P. Ershov, V. V. Sil’vestrov, D. I. Karpov, and A. V. Plastinin, “Evolution of Electrical Conductivity of Emulsion Explosives during Their Detonation Conversion,” Fiz. Goreniya Vzryva 51 (3), 91–97 (2015) [Combust., Expl., Shock Waves 51 (3), 366–372 (2015)].Google Scholar
  3. 3.
    A. S. Yunoshev, A. V. Plastinin, and V. V. Sil’vestrov, “Investigation of the Influence of the Density of the Emulsion Explosive to the Width of the Reaction Zone,” Fiz. Goreniya Vzryva 48 (3), 79–88 (2012) [Combust., Expl., Shock Waves 48 (3), 319–327 (2012)].Google Scholar
  4. 4.
    V. V. Sil’vestrov, S. A. Bordzilovskii, S. M. Karakhanov, and A. V. Plastinin, “Temperature of the Detonation Front of an Emulsion Explosive,” Fiz. Goreniya Vzryva 51 (1), 135–142 (2015) [Combust., Expl., Shock Waves 51 (1), 116–123 (2015)].Google Scholar
  5. 5.
    V. V. Sil’vestrov and A. V. Plastinin, “Investigation of Low Detonation Velocity Mulsion Explosives,” Fiz. Goreniya Vzryva 49 (5), 124–133 (2009) [Combust., Expl., Shock Waves 49 (5), 618–626 (2009)].Google Scholar
  6. 6.
    V. V. Sil’vestrov, A. V. Plastinin, and S. I. Rafeichik, “Application of Emulsion Explosives for Explosive Welding,” Avtomat. Svarka, No. 11, 69–73 (2009).Google Scholar
  7. 7.
    B. S. Zlobin, V. V. Sil’vestrov, A. A. Shtertser, and A. V. Plastinin, “Formation of Joints in the Explosive Welding of AO20-1 Alloy with Steel,” Izv. VGTU, Ser. Svar. Vzryv. Svoist. Svar. Soed. 5 (14), 51–56 (2012).Google Scholar
  8. 8.
    B. S. Zlobin, V. V. Sil’vestrov, A. A. Shtertser, and A. V. Plastinin, “Improvement of the Technology of Manufacturing Steel–Aluminum Bearing Liners,” Izv. VGTU, Ser. Svar. Vzryv. Svoist. Svar. Soed. 5 (14), 57–63 (2012).Google Scholar
  9. 9.
    B. Zlobin, V. Sil’vestrov, A. Shtertser, A. Plastinin, V. Kiselev, “Enhancement of Explosive Welding Possibilities by the use of Emulsion Explosive,” Arch. Metallurg Mater. 59 (4), 1587–1592 (2014).Google Scholar
  10. 10.
    A. A. Deribas, Physics of Hardening and Explosive Welding (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  11. 11.
    I. D. Zakharenko and B. S. Zlobin, “Effect of the Hardness of Welded Materials on the Position of the Lower Limit of Explosive Welding,” Fiz. Goreniya Vzryva 19 (5), 170–174 (1983) [Combust., Expl., Shock Waves 19 (5), 689–692 (1983)].Google Scholar
  12. 12.
    B. Zlobin, A. Shtertser, V. Kiselev, and A. Plastinin, “Bonding and Formation at the Explosive Welding of Low-Plastic Materials,” in 13 Int. Symp. on Explosive Production of New Materials: Science, Technology, Business, and Innovations (Coimbra, Portugal, 2016), pp. 219–221.Google Scholar
  13. 13.
    A. N. Mikhailov and A. N. Dremin, “The Times of Development of Wave Formation in Explosive Welding,” in Proc. of Second Congress on Material Treatment by Explosion Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., 1982), pp. 67–69.Google Scholar
  14. 14.
    I. V. Yakovlev and V. V. Pai, Explosive Welding of Metals (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].Google Scholar
  15. 15.
    S. P. Kiselev and V. I. Mali, “Numerical and Experimental Modeling of Jet Formation during a High-Velocity Oblique Impact of Metal Plates,” Fiz. Goreniya Vzryva 48 (2), 100–112 (2012) [Combust., Expl., Shock Waves 48 (2), 214–225 (2012)].Google Scholar
  16. 16.
    V. V. Pai, Ya. L. Luk’yanov, G. E. Kuz’min, and I. V. Yakovlev, “Wave Formation in a High-Velocity Symmetric Impact of Metal Plates,” Fiz. Goreniya Vzryva 42 (5), 132–137 (2006) [Combust., Expl., Shock Waves 42 (5), 611–616 (2006)].Google Scholar
  17. 17.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon Press, Oxford-Elmsford, New York, 1987).Google Scholar
  18. 18.
    A. A. Berdichenko, B.S. Zlobin, L. B. Pervukhin, and A. A. Shtertser, “Possible Ignition of Particles Ejected into the Gap in Explosive Welding of Titanium,” Fiz. Goreniya Vzryva 39 (2), 128–136 (2003) [Combust., Expl., Shock Waves 39 (2), 232–239 (2003)].Google Scholar
  19. 19.
    B. Crossland, Explosive Welding of Metals and Its Application (Clarendon Press, Oxford, 1982).Google Scholar
  20. 20.
    S. P. Kiselev, “Numerical Simulation of Wave Formation in an Oblique Impact of Plates by the Method of Molecular Dynamics,” Prikl. Mekh. Tekh. Fiz. 53 (6), 121–133 (2012) [J. Appl. Mech. Tech. Phys. 53 (6), 907–917 (2012)].MATHGoogle Scholar
  21. 21.
    G. R. Cowan, A. H. Holtzman, “Flow Configuration in Colliding Plates,” J. Appl. Phys. 34, 928–939 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. S. Zlobin
    • 1
  • V. V. Kiselev
    • 1
  • A. A. Shterzer
    • 1
    • 2
  • A. V. Plastinin
    • 2
  1. 1.Design and Technology Department of the Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations