Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 216–230 | Cite as

Possible Negative Value of the Grüneisen Coefficient of Hydrogen in the Area of Pressures from 40 to 75 GPa and Temperatures from 3500 to 7500 K

  • A. B. Medvedev


Experimental data on single and double shock compression of initially liquid and gaseous (compressed by initial pressure) hydrogen isotopes (protium and deuterium) at pressures of ≈10–180 GPa and temperatures of ≈3000–20 000 K are considered. The mean values of the measured variables (pressure, density, internal energy, and temperature) show that hydrogen at a pressure of ≈41 GPa in the temperature interval of ≈3500–5700 K and at a pressure of ≈74 GPa in the temperature interval of ≈5000–7500 K is characterized by a negative value of the Grüneisen coefficient. Such an anomaly may play a key role in some processes, including those proceeding in the Jupiter gas envelope, which mainly consists of protium (≈90%) and helium (≈10%). In the range of pressures (depths) of its manifestation, convection in the protium envelope is forbidden with an increase in temperature in the envelope with increasing pressure. Possibly, a comparatively low fraction of helium does not suppress the anomaly, and it serves as a barrier for large-scale convection in the Jupiter envelope. Additional refining experiments are required to confirm this anomaly.


hydrogen protium deuterium equation of state pressure temperature density energy Grüneisen coefficient shock adiabat isentrope convection Jupiter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Zharkov and V. P. Trubitsyn, Physics of Planetary Interior (Nauka, Moscow 1980) [in Russian].Google Scholar
  2. 2.
    D. Saumon and T. Guillot, “Shock Compression of Deuterium and the Interiors of Jupiter and Saturn,” Astrophys. J. 609, 1170 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    G. I. Kerley, “Structure of the Planets Jupiter and Saturn,” A Kerley Tech. Services Res. Report No. KTS04-1 (2004).Google Scholar
  4. 4.
    B. Becker, W. Lorenzen, J. J. Fortney, et al., “Ab Initio Equation of State for Hydrogen (H-REOS.3) and Helium (He-REOS.3) and Their Implications for the Interior of Brown Dwarfs,” Astrophys. J. Supp. Ser. 215, 21 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    W. B. Hubbard and B. Militzer, “A Preliminary Jupiter Model,” Astrophys. J. 820, 80 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Miguel, T. Guillot, and L. Fayon, “Jupiter Internal Structure: The Effect of Different Equations of State,” Astron. Astrophys. 596, A114 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Morales, S. Hamel, K. Caspersen, and E. Schwegler, “Hydrogen–Helium Demixing from First Principles: From Diamond Anvil Cells to Planetary Interiors,” Phys. Rev. B 87, 174105 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    D. Saumon, G. Chabrier, and H. M. van Horn, “An Equation of State for Low-Mass Stars and Giant Planets,” Astrophys. J. Suppl. Ser. 99, 713–741 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    G. I. Kerley, “Equation of State for Hydrogen and Deuterium,” Sandia Report No. SAND2003-3613 (2003).Google Scholar
  10. 10.
    B. Militzer, “Equation of State Calculations of Hydrogen–Helium Mixtures in Solar and Extrasolar Giant Planets,” Phys. Rev. B 87, 014202 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    B. Militzer and W. B. Hubbard, “Ab Initio Equation of State for Hydrogen–HeliumMixtures with Recalibration of Giant Planet Mass-Radius Relation,” Astrophys. J. 774, 148 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    J. Vorberger, I. Tamblyn, B. Militzer, and S. A. Bonev, “Hydrogen–Helium Mixtures in the Interiors of Giant Planets,” Phys. Rev. B 75, 024206 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    B. Militzer, W. B. Hubbard, J. Vorberger, et al., “A Massive Core in Jupiter Predicted from First-Principles Simulations,” Astrophys. J. Lett. 688, L45 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    B. Militzer and W. B. Hubbard, “Comparison of Jupiter Interior Models Derived from First-Principles Simulations,” Astrophys. Space Sci. 322, 129–133 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    W. J. Nellis, M. Ross, and N. C. Holmes, “Temperature Measurements of Shock-Compressed Liquid Hydrogen: Implications for the Interior of Jupiter,” Science 269, 1249–1252 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    M. Ross, “Linear-Mixing Model for Shock-Compressed Liquid Deuterium,” Phys. Rev. B 58, 669–677 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    V. N. Zharkov and T. V. Gudkova, “Modern Models of Giant Planets,” in High-Pressure Research Applications to Earth and Planetary Sciences, Eds. by Y. Syono and M. H. Manghnani (TERRAPUB–American Geophysical Union, Tokyo–Washington, 1992), pp. 393–401.Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1987; Pergamon Press, 1980).Google Scholar
  19. 19.
    K. K. Krupnikov, M. I. Brazhnik, and V. P. Krupnikova, “Shock Compression of Porous Tungsten,” Zh. Eksp. Teor. Fiz. 42 (3), 675–683 (1962).Google Scholar
  20. 20.
    L. V. Al’tshuler, M. I. Brazhnik, and G. S. Telegin, “Strength and Elasticity of Iron and Copper at High Shock-Wave Compression Pressures,” Prikl. Mekh. Tekh. Fiz. 12 (6), 159–166 (1971) [J. Appl. Mech. Tech. Phys. 12 (6), 921–926 (1971)].Google Scholar
  21. 21.
    N. Nettelmann, A. Becker, B. Holst, and R. Redmer, “Jupiter Models with Improved ab Initio Hydrogen Equation of State (H-REOS.2),” Astrophys. J. 750, 52 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    J. W. Nellis, A. C. Mitchell, M. van Thiel, et al., “Equation of State Data for Molecular Hydrogen and Deuterium at Shock Pressures in the Range 2–76GPa (20–760 kbar),” J. Chem. Phys. 79, 1480–1486 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    R. D. Dick and G. I. Kerley, “Shock Compression Data for Liquids. II. Condensed Hydrogen and Deuterium,” J. Chem. Phys. 73 (10), 5264–5271 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    M. van Thiel, L. B. Hord, W. H. Gust, et al., “Shock Compression of Deuterium to 900 kbar,” Phys. Earth Planet. Int. 9, 57–77 (1974).ADSCrossRefGoogle Scholar
  25. 25.
    N. C. Holmes, M. Ross, and W. J. Nellis, “Temperature Measurements and Dissociation of Shock-Compressed Liquid Deuterium and Hydrogen,” Phys. Rev. B 52 (22), 15835–15845 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    M. D. Knudson and M. P. Desjarlais, “High-Precision Shock Wave Measurements of Deuterium: Evaluation of Exchange-Correlation Functionals at the Molecular-to-Atomic Transition,” Phys. Rev. Lett. 118, 033501 (2017). (Suppl. Material at http:// 10.1103/Phys-RevLett.118.035501).CrossRefGoogle Scholar
  27. 27.
    M. D. Knudson, D. L. Hanson, J. E. Bailey, et al., “Principal Hugoniot, Reverberating Wave, and Mechanical Reshock Measurements of Liquid Deuterium to 400GPa Using Plate Impact Techniques,” Phys. Rev. B 69, 144209 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    G. B. Boriskov, A. I. Bykov, R. I. Il’kaev, et al., “Shock Compression of Liquid Deuterium up to 109GPa,” Phys. Rev. B 71, 092104 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    D. G. Hicks, T. R. Boehly, P. M. Celliers, et al., “Laser-Driven Single Shock Compression of Fluid Deuterium from 45 to 220GPa,” Phys. Rev. B 79, 014112 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    I. B. da Silva, P. Celliers, G. W. Collins, et al., “Absolute Equation of State Measurements on Shocked Liquid Deuterium up to 200GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    G. W. Collins, L. B. da Silva, P. Celliers, et al., “Measurements of the Equation of State of Deuterium at the Fluid Insulator-Metal Transition,” Science 281, 1178–1181 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    J. E. Bailey, M. D. Knudson, A. L. Carlson, et al., “Time-Resolved Optical Spectroscopy Measurements of Shocked Liquid Deuterium,” Phys. Rev. B 78, 144107 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    P. Loubeyre, S. Brygoo, J. Eggert, et al., “Extended Data Set for the Equation of State of Warm Dense Hydrogen Isotopes,” Phys. Rev. B 86, 144115 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    S. Brygoo, M. Millot, P. Loubeyre, et al., “Analysis of Laser Shock Experiments on Precompressed Samples Using a Quartz Reference and Application to Warm Dense Hydrogen and Helium,” J. Appl. Phys. 118, 195901 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    A. Becker, N. Nettelmann, B. Holst, and R. Redmer, “Isentropic Compression of Hydrogen: Probing Conditions Deep in Planetary Interiors,” Phys. Rev. B 88, 045122 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1967).Google Scholar
  37. 37.
    M. D. Knudson and M. P. Desjarlais, “Adiabatic Release Measurements in α-Quartz between 300 and 1200GPa: Characterization of α-Quartz as a Shock Standard in the Multimegabar Regime,” Phys. Rev. B 88, 184107 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    P. Loubeyre, R. LeToullec, D. Hausermann, et al., “X-ray Diffraction and Equation of State of Hydrogen at Megabar Pressure,” Nature 383, 702–704 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    Thermophysical Properties of Fluid Systems, NIST Webbook; http://webbook. Scholar
  40. 40.
    M. V. Zhernokletov, V. N. Zubarev, and Yu. N. Sutulov, “Porous-Specimen Adiabats and Solid-Copper Expansion Isentropes,” Prikl. Mekh. Tekh. Fiz. 25 (1) 119–123 (1984) [J. Appl. Mech. Tech. Phys. 25 (1), 107–110 (1984)].Google Scholar
  41. 41.
    Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Substances, Ed. by R. F. Trunin (VNIIEF, Sarov, 2006) [in Russian].Google Scholar
  42. 42.
    V. G. Vildanov, M. M. Gorshkov, and K. K. Krupnikov, “Shock Compression of Porous Quartz,” RFNCVNIITF Report No. G83219 (VINITI, 1987).Google Scholar
  43. 43.
    N. Tubman et al., “Molecular–Atomic Transition along the Deuterium Hugoniot Curve with Coupled Electron–Ion Monte Carlo Simulations,” Phys. Rev. Lett. 115, 045301 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    J. Clerouin and J.-F. Dufreche, “Ab Initio Study of Deuterium in Dissociation Regime: Sound Speed and Transport Properties,” Phys. Rev. E 64, 066406 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    W. J. Nellis, H. B. Radousky, D. C. Hamilton, et al., “Equation of State, Shock-Temperature and Electrical Conductivity Data of Dense Fluid Nitrogen in the Region of the Dissociative Phase Transition,” J. Chem. Phys. 94 (3), 2244–2256 (1991).ADSCrossRefGoogle Scholar
  46. 46.
    A. B. Medvedev, “On the Presence of States with a Negative Grüneisen Parameter in Overdriven Explosion Products,” Fiz. Goreniya Vzryva 59 (4), 102–109 (2014) [Combust., Expl., Shock Waves 59 (4), 463–469 (2014)].Google Scholar
  47. 47.
    G. L. Kerley and A. C. Switendick, “Theory of Molecular Dissociation in Shocked Nitrogen and Oxygen,” in Shock Waves in Condensed Matter, Ed. by Y. M. Gupta (Plenum, New York, 1986), pp. 95–100).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Experimental Physics (VNIIEF)Russian Federal Nuclear CenterSarovRussia
  2. 2.Department of the National Research Nuclear University “MEPhI,”Institute of Physics and TechnologySarovRussia

Personalised recommendations