Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 207–215 | Cite as

Investigation of Gas Detonation in Over-Rich Mixtures of Hydrocarbons with Oxygen

  • I. S. Batraev
  • A. A. Vasil’ev
  • V. Yu. Ul’yanitskii
  • A. A. Shtertser
  • D. K. Rybin


Detonation in mixtures of acetylene, ethylene, and propylene with oxygen in the range of fuel component concentrations with possible formation of carbon condensate in detonation products is studied both experimentally and theoretically. In contrast to the traditional method of studying detonation in a quiescent mixture located in a closed tube, the present investigations are performed in a tube with an open end (for exhaustion of detonation products) under the conditions of separate injection of the components and their mixing after injection into the detonation tube through the ignition chamber. The components are injected into the tube from a computercontrolled multichannel system of gas injection of the CCDS2000 detonation spraying setup. The detonation cell size and detonation velocity are measured; these parameters are also calculated by the BEZOPASNOST (SAFETY) computer program. A comparison of the computed and experimental dependences testifies to a complicated character of transformation of detonation products from a purely gaseous to heterogeneous state and to its effect on the detonation wave.


detonation pulsed gas-detonation device over-rich mixture reaction products carbon condensate homogeneous and heterogeneous medium cell size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Vasil’ev and A. V. Pinaev, “Formation of Carbon Clusters in Deflagration and Detonation Waves in Gas Mixtures,” Fiz. Goreniya Vzryva 44 (3), 81–94 (2008) [Combust., Expl., Shock Waves 44 (3), 317–329 (2008)].Google Scholar
  2. 2.
    A. A. Vasil’ev, “Detonation Properties of the Synthesis Gas,” Fiz. Goreniya Vzryva 43 (6), 90–96 (2007) [Comb., Expl., Shock Waves 43 (6), 703–709 (2007)].Google Scholar
  3. 3.
    R. K. Cheng and A. K. Oppenheim, “Autoignition in Methane–Hydrogen Mixtures,” Combust. Flame 58, 125–139 (1984).CrossRefGoogle Scholar
  4. 4.
    A. A. Vasil’ev, “Determination of Induction Time in Multi-Fuels Systems,” in Proc. of the Third Asia–Pacific Conf. on Combustion (ASPACC-2001) (Seoul National Univ., Seoul, 2001), pp. 493–496.Google Scholar
  5. 5.
    R. Poorman, H. Sargent, and H. Lamprey, “Method and Apparatus Utilizing Detonation Waves for Spraying and Other Purposes,” US Patent No. 2714563 (August 2, 1955).Google Scholar
  6. 6.
    E. Kadyrov and V. Kadyrov, “Gas Dynamical Parameters of Detonation Powder Spraying,” J. Therm. Spray Technol. 4 (3), 280–286 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals. From Powder to Part (Springer, New York, 2014).CrossRefGoogle Scholar
  8. 8.
    V. Ulianitsky, A. Shtertser, S. Zlobin, and I. Smurov, “Computer-Controlled Detonation Spraying: from Process Fundamentals toward Advanced Applications,” J. Therm. Spray Technol. 20 (4), 791–801 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    S. M. Frolov, V. S. Aksenov, and V. Ya. Basevich, “Demonstrator of a Pulse Detonation Engine Operating on a Liquid Fuel,” Dokl. Akad. Nauk 402 (4), 500–502 (2005).Google Scholar
  10. 10.
    V. Yu. Ul’yanitskii, A. A. Shtertser, S. B. Zlobin, and A. L. Kiryakin, “Method of Thrust Generation,” RF Patent No. 2330979, Publ. 08.10.08, Bul. No. 22.Google Scholar
  11. 11.
    I. S. Batraev, A. A. Vasil’ev, A. V. Pinaev, et al., “Method of Nanocarbon Production,” Application for RF Patent No. 2016132962, Priority August 09, 2016.Google Scholar
  12. 12.
    A. A. Shtertser, V. Yu. Ul’yanitskii, I. S. Batraev, et al., “Diagnostics of the Structure and Composition of Ultrafine Carbon Obtained by the Detonation Method,” Zh. Strukt. Khim. 55 (5), 1031–1034 (2014).Google Scholar
  13. 13.
    V. Yu. Ulianitsky, A. A. Shtertser, I. S. Batraev, et al., “Detonating Combustion of Gaseous Hydrocarbons in the Pulse Gas-Detonation Apparatus Producing Nano-Globular Carbon,” Chemistry and Physics of Combustion and Dispersed Systems, Proc. All-Russian School-Conf. with Int. Participation Dedicated to the 110th Anniversary of the Corresponding Member of the Academy of Sciences of the USSR A. A. Kovalsky, Novosibirsk, ICKC SB RAS, September 19–20, 2016; http://www. 110/proc e.htm, Paper 04.Google Scholar
  14. 14.
    V. Yu. Ul’yanitskii, A. L. Kiryakin, A. A. Shtertser, and S. B. Zlobin, “Setup for Detonation Spraying of Coatings,” RF Patent No. 2 399 430, Publ. 09.20.2010, Bul. No. 26.Google Scholar
  15. 15.
    V. Yu. Ul’yanitskii, A. L. Kiryakin, A. A. Shtertser, and S. B. Zlobin, “Setup for Detonation Spraying of Coatings,” RF Patent No. 2 399 431, Publ. 20.09.2010, Bul. No. 26.Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon Press, Oxford-Elmsford, New York, 1987).Google Scholar
  17. 17.
    N. B. Vargaftik, Reference Book on Thermophysical Properties of Gases and Liquids (Stars, Moscow, 2006) [in Russian].Google Scholar
  18. 18.
    V. Yu. Ul’yanitskii, A. A. Shtertser, and I. S. Batraev, “Detonation of a Gas Fuel Based on Methyl Acetylene and Allene,” Fiz. Goreniya Vzryva 51 (2), 118–124 (2015) [Combust., Expl., Shock Waves 51 (2), 246–251 (2015)].Google Scholar
  19. 19.
    A. A. Vasil’ev, A. I. Valishev, V. A. Vasil’ev, et al., “Method and Calculation Code ‘SAFETY’ for Determination of Detonation Hazards,” in Proc. Second Asia-Pacific Conf. on Combustion, Taiwan, May 9–12, 1999 (Nat. Cheng Kung Univ., Taiwan, 1999), pp. 594–597.Google Scholar
  20. 20.
    J. Breton, “Recherches sur la Detonation des Melanges Gazeux,” in Theses Faculte des Sciences Univ. (Nancy, 1936).Google Scholar
  21. 21.
    K. J. Dorge, F. Stephan, and H. G. Wagner, “Acetylene Detonations near the Upper Limit of Detonability,” in Proc. 17th Int. Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS-1999), July 25–30, 1999 (Univ. Heidelberg IWR, 1999), Paper 13.Google Scholar
  22. 22.
    G. B. Kistiakowsky, H. T. Knight, and M. E. Malin, “Gaseous Detonations. IV. The Acetylene–Oxygen Mixtures,” J. Chem. Phys. 20 (5), 884–887 (1952).ADSCrossRefGoogle Scholar
  23. 23.
    H. G. Wagner, “Soot Formation in Combustion,” in Proc. Seventeenth Symp. (Int.) on Combustion (The Combustion Inst., Pittsburgh, 1979), pp. 3–19.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. S. Batraev
    • 1
  • A. A. Vasil’ev
    • 1
  • V. Yu. Ul’yanitskii
    • 1
  • A. A. Shtertser
    • 1
  • D. K. Rybin
    • 1
  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations