Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 200–206 | Cite as

Attenuation and Suppression of Detonation Waves in Reacting Gas Mixtures by Clouds of Inert Micro- and Nanoparticles

Article
  • 2 Downloads

Abstract

Physicomathematical models are proposed to describe the processes of detonation propagation, attenuation, and suppression in hydrogen–oxygen, methane–oxygen, and silane–air mixtures with inert micro- and nanoparticles. Based on these models, the detonation velocity deficit is found as a function of the size and concentration of inert micro- and nanoparticles. Three types of detonation flows in gas suspensions of reacting gases and inert nanoparticles are observed: steady propagation of an attenuated detonation wave in the gas suspension, propagation of a galloping detonation wave near the flammability limit, and failure of the detonation process. The mechanisms of detonation suppression by microparticles and nanoparticles are found to be similar to each other. The essence of these mechanisms is decomposition of the detonation wave into an attenuated frozen shock wave and the front of ignition and combustion, which lags behind the shock wave. The concentration limits of detonation in the considered reacting gas mixtures with particles ranging from 10 nm to 1 μm in diameter are also comparable. It turns out that the detonation suppression efficiency does not increase after passing from microparticles to nanoparticles.

Keywords

detonation suppression mixtures of hydrogen methane and silane detailed chemical kinetics mathematical modeling gas suspension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Fedorov, P. A. Fomin, V. M. Fomin, D. A. Tropin, and J.-R. Chen, in Mathematical Analysis of Detonation Suppression by Inert Particles (Kao Tech, Kaohsiung, Taiwan, 2012).Google Scholar
  2. 2.
    A. V. Fedorov, P. A. Fomin, V. M. Fomin, et al., Physicomathematical Modeling of Detonation Suppression by Clouds Consisting of Fine Particles, (NGASU, Novosibirsk, 2011) [in Russian].Google Scholar
  3. 3.
    P. A. Fomin and J.-R. Chen, “Effect of Chemically Inert Particles on Parameters and Suppression of Detonation in Gases,” Fiz. Goreniya Vzryva 45 (3), 77–88 (2009) [Combust., Expl., Shock Waves 45 (3), 303–313 (2009)].Google Scholar
  4. 4.
    A. A. Borisov, B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko, “Effect of Inert Solid Particles on Detonation of a Combustible Gas Mixture,” Fiz. Goreniya Vzryva 11 (6), 909–914 (1975) [Combust., Expl., Shock Waves 11 (6), 774–777 (1975)].ADSGoogle Scholar
  5. 5.
    D. A. Tropin and A. V. Fedorov, “Physicomathematical Modeling of Detonation Suppression by Inert Particles in Methane–Oxygen and Methane–Hydrogen–Oxygen Mixtures,” Fiz. Goreniya Vzryva 50 (5), 48–52 (2014) [Combust., Expl., Shock Waves 50 (5), 542–546 (2014)].Google Scholar
  6. 6.
    A. V. Fedorov and D. A. Tropin, “Modeling of Detonation Wave Propagation through a Cloud of Particles in a Two-Velocity Two-Temperature Formulation,” Fiz. Goreniya Vzryva 49 (2), 61–70 (2013) [Combust., Expl., Shock Waves 49 (2), 178–187 (2013)].Google Scholar
  7. 7.
    M. V. Papalexandris, “Numerical Simulation of Detonations in Mixtures of Gases and Solid Particles,” J. Fluid Mech. 507, 95–142 (2004).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    H. Shafiee and M. H. Djavareshkian, “CFD Simulation of Particles Effects on Characteristics of Detonation,” Int. J. Computer Theory Eng. 6 (6), 466–471 (2014).CrossRefGoogle Scholar
  9. 9.
    A. V. Fedorov, P. A. Fomin, D. A. Tropin, and J.-R. Chen, “Modeling of the Explosion Hazard and Alleviation of its Consequences in Silane–Air Mixtures,” Izv. Vyssh. Uchebn. Zaved. Stroit., Nos. 9–10, 108–125 (2014).Google Scholar
  10. 10.
    A. V. Fedorov and V. M. Fomin, “Detonation of Gas Mixtures with Inert Solid Particles,” in Proc. IUTAM Symp. on Combustion in Supersonic Flows (Kluwer Acad. Publ., 1997), pp. 147–191.Google Scholar
  11. 11.
    Yu. V. Kazakov, Yu. V. Mironov, and A. V. Fedorov, “Calculation of Detonation of a Gas Mixture in the Presence of Inert SOlid Particles,” Model. Mekh. 5(22) (3), 152 (1991).Google Scholar
  12. 12.
    M. Wolinski and P. Wolanski, “Gaseous Detonation Processes in Presence of Inert Particles,” Arch. Combust. 7 (3/4), 353–370 (1987).Google Scholar
  13. 13.
    D. A. Tropin and A. V. Fedorov, “Physicomathematical Modeling of Ignition and Combustion of Silane in Transient and Reflected Shock Waves,” Fiz. Goreniya Vzryva 51 (4), 37–45 (2015) [Combust., Expl., Shock Waves 51 (4), 431–438 (2015)].Google Scholar
  14. 14.
    Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Detonation Dynamics of Gas Suspensions,” Preprint No. 232-87, Inst. Theor. Appl. Mech., Sib. Branch, Acad. of Sci. of the USSR, Novosibirsk (1987).Google Scholar
  15. 15.
    Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Normal Detonation Regimes in Relaxing Media,” Fiz. Goreniya Vzryva 25 (1), 119–127 (1989) [Combust., Expl., Shock Waves 25 (1), 109–116 (1989)].Google Scholar
  16. 16.
    T. A. Khmel’ and A. V. Fedorov, “Physicomathematical Model of Detonation of a Gas Suspension of Aluminum Micro-and Nanoparticles,” in Fundamental and Applied Problems of Modern Mechanics, Proc. IX All-Russia Conf. Devoted to the 55th Anniv. of Yu.A.Gagarin’s Flight, Tomsk, Sept. 21–25, 2016, pp. 108–110.Google Scholar
  17. 17.
    D. S. Sundaram, V. Yang, and V. E. Zarko, “Combustion of Nano Aluminum Particles (Review),” Fiz. Goreniya Vzryva 51 (2), 37–63 (2015) [Combust., Expl., Shock Waves 51 (2), 173–196 (2015)].Google Scholar
  18. 18.
    A. V. Filippov and D. E. Rosner, “Energy Transfer between an Aerosol Particle and Gas at High Temperature Ratios in the Knudsen Transition Regime,” Int. J. Heat Mass Transfer 43 (1), 127–138 (2000).CrossRefMATHGoogle Scholar
  19. 19.
    I. A. Bedarev and A. V. Fedorov, “Comparative Analysis of Three Mathematical Models of Hydrogen Ignition,” Fiz. Goreniya Vzryva 42 (1), 26–33 (2006) [Combust., Expl., Shock Waves 42 (1), 19–26 (2006)].Google Scholar
  20. 20.
    J. H. Tien and R. J. Stalker, “Release of Chemical Energy by Combustion in a Supersonic Mixing Layer of Hydrogen and Air,” Combust. Flame, No. 130, 329–348 (2002).CrossRefGoogle Scholar
  21. 21.
    A. V. Fedorov, D. A. Tropin, and I. A. Bedarev, “Mathematical Modeling of Detonation Suppression in a Hydrogen–Oxygen Mixture by Inert Particles,” Fiz. Goreniya Vzryva 46 (3), 103–115 (2010) [Combust., Expl., Shock Waves 46 (3), 332–343 (2010)].Google Scholar
  22. 22.
    A. V. Fedorov and D. A. Tropin, “Determination of the Critical Size of a Particle Cloud Necessary for Suppression of Gas Detonation,” Fiz. Goreniya Vzryva 47 (4), 100–108 (2011) [Combust., Expl., Shock Waves 47 (4), 464–472 (2011)].Google Scholar
  23. 23.
    C. K. Westbrook and P. A. Urtiew, “Use of Chemical Kinetics to Predict Critical Parameters of Gaseous Detonations,” Fiz. Goreniya Vzryva 19 (6), 65–76 (1983) [Combust., Expl., Shock Waves 19 (6), 752–767 (1983)].Google Scholar
  24. 24.
    J. A. Britten, J. Tong, and C. K. Westbrook, “A Numerical Study of Silane Combustion,” in Twenty-Third Symp. (Int.) on Combustion (The Combustion Inst., Pittsburgh, 1990), pp. 195–202.Google Scholar
  25. 25.
    D. A. Tropin and A. V. Fedorov, “Ignition of a Two-Fuel Hydrogen–Silane Mixture in Air,” Fiz. Goreniya Vzryva 53 (1), 3–10 (2017) [Combust., Expl., Shock Waves 53 (1), 1–7 (2017)].Google Scholar
  26. 26.
    D. A. Tropin and A. V. Fedorov, “Calculation of Flammability Limits of Silane–Oxygen and Silane–Air Mixtures,” Fiz. Goreniya Vzryva 52 (1), 46–51 (2016) [Combust., Expl., Shock Waves 52 (1), 40–44 (2016)].Google Scholar
  27. 27.
    V. Yu. Ul’yanitskii, “Galloping Mode in a Gas Detonation,” Fiz. Goreniya Vzryva 17 (1), 118–124 (1981) [Combust., Expl., Shock Waves 17 (1), 93–96 (1981)].Google Scholar
  28. 28.
    Yu. A. Nikolaev, A. A. Vasil’ev, and V. Yu. Ul’yanitskii, “Gas Detonation and its Application in Engineering and Technologies (Review),” Fiz. Goreniya Vzryva 39 (4), 22–54 (2003) [Combust., Expl., Shock Waves 39 (4), 382–410 (2003)].Google Scholar
  29. 29.
    A. Teodorczyk, “Mitigation of Gaseous Detonations,” in Proc. 11th Int. Symp. on Hazards, Prevention and Mitigation of Industrial Explosions (11th ISHPMIE), China, Dalian, July 24–29, 2016, pp. 55–64.Google Scholar
  30. 30.
    B. E. Gelfand, “Breakup Phenomena in Flows with Velocity Lag,” Prog. Energy Combust. Sci. 22, 201–265 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations