Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 179–188 | Cite as

Numerical Simulation of Spark Ignition of a Coal Dust–Air Mixture

  • K. M. Moiseeva
  • A. Yu. Krainov


This paper describes the development of a physico-mathematical model of spark ignition of a coal dust–air mixture, which is based on a two-phase two-speed model of reacting gas-dispersion medium. There are the results of numerical solution on the problem of spark ignition of a coal dust–air mixture with allowance for its movement caused by gas expansion during heating. The relationships between the minimal energy of spark ignition of a coal dust–air mixture and the mass concentration and particle size of coal dust are obtained. The particle size increases along with the minimal energy of spark ignition. There is mass concentration of coal dust particles with which the energy of spark ignition is minimal. The comparison of the results of calculations of the minimal energy of spark ignition of coal dust with known experimental data yields their satisfactory agreement.


coal dust–air mixture minimum energy of spark ignition numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kalyakin, V. Kostenko, E. Zavyalova, et al., “Effect of Admixtures of Mine Flammable Gases on the Explosion Hazard of Coal Aerosols,” in Aktualne Problemy Zwalczania Zagrózén Górniczych, II Konferencja Naukowo-Techniczna (Brenna, 2012), Nos. 7–9, pp. 176–184.Google Scholar
  2. 2.
    D. Bradley, M. Lawes, M. J. Scott, et al., “The Structure of Coal–Air–CH4 Laminar Flames in a Low-Pressure Burner: CARS Measurements and Modeling Studies,” Combust. Flame 124 (1–2), 82–105 (2001).CrossRefGoogle Scholar
  3. 3.
    A. V. Fedorov and T. A. Khmel’, “Mathematical Simulation of Heterogeneous Detonation of Coal Dust in Oxygen with Allowance for the Ignition Stage,” Fiz. Goreniya Vzryva 41 (1), 89–99 (2005) [Combust., Expl., Shock Waves 41 (1), 78–87 (2005)].Google Scholar
  4. 4.
    A. Yu. Krainov, “Modeling of Flame Propagation in a Mixture of Combustible Gases and Particles,” Fiz. Goreniya Vzryva 36 (2), 3–9 (2000) [Combust., Expl., Shock Waves 36 (2), 157–163 (2000)].Google Scholar
  5. 5.
    S. R. Rockwell and A. S. Rangwala, “Influence of Coal Dust on Premixed Turbulent Methane–Air Flames,” Combust. Flame 160, 635–640 (2013).CrossRefGoogle Scholar
  6. 6.
    A. A. Dement’ev, A. Yu. Krainov, and K. M. Moiseeva, “Effect of Fuel Concentration in a Hybrid Coal–Gas Mixture on the Combustion Front Propagation Velocity,” Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 4 (36), 55–64 (2015).Google Scholar
  7. 7.
    A. A. Dement’ev, K. M. Moiseeva, A. Yu. Krainov, et al., “Comparing the Results of Simulation of Flame Propagation in a Hybrid Coal–Gas Mixture with Experimental Data,” Inzh.-Fiz. Zh. 89 (6), 1538–1546 (2016).Google Scholar
  8. 8.
    A. M. Baklanov, S. V. Valiulin, S. N. Dubtsov, et al., “Nanoaerosol Fraction in Man-Made Coal Dust and Its Effect on Explosiveness of Dust–Methane–Air Mixtures,” Dokl. Akad. Nauk 461 (3), 295–299 (2015).Google Scholar
  9. 9.
    V. V. Pomerantsev, K. M. Aref’ev, D. B. Akhmedov, et al., Basics of Practical Theory of Combustion: Manual for Universities, Ed. by V. V. Pomerantsev (Energoatomizdat, Leningrad, 1986) [in Russian].Google Scholar
  10. 10.
    A. Ya. Korolchenko, Fire and Explosion Safety of Industrial Dust (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  11. 11.
    M. I. Netseplyaev, A. I. Lyubimova, P. M. Petrukhin, et al., Prevention of Coal Dust Explosions in Mines (Nedra, Moscow, 1992) [in Russian].Google Scholar
  12. 12.
    V. N. Vilyunov, “Spark Ignition of Gas Mixtures,” Dokl. Akad. Nauk SSSR 208, 66–69 (1973).Google Scholar
  13. 13.
    V. N. Vilyunov, E. A. Nekrasov, and V. S. Baushev, “Laws Governing Spark Ignition and Establishment of Stationary Combustion Conditions,” Fiz. Goreniya Vzryva 12 (3), 361–366 (1976) [Combust., Expl., Shock Waves 12 (3), 320–325 (1976)].Google Scholar
  14. 14.
    A. Yu. Krainov and V. A. Baimler, “Effect of Thermal Expansion on the Minimum Energy of Gas Spark Ignition,” Fiz. Goreniya Vzryva 38 (4), 9–13 (2002) [Combust., Expl., Shock Waves 38 (4), 387–390 (2002)].Google Scholar
  15. 15.
    A. Yu. Krainov and V. A. Baimler, “Critical Conditions of Spark Ignition of a Mixture of Gases (Oxidizer and Fuel) and Reactive Particles,” Fiz. Goreniya Vzryva 38 (3), 30–36 (2002) [Combust., Expl., ShockWaves 38 (3), 278–283 (2002)].Google Scholar
  16. 16.
    A. Yu. Krainov, “ Effect of Radiant Heat Transfer on the Minimum Spark–Ignition Energy of Gas Suspensions,” Fiz. Goreniya Vzryva 37 (3), 16–24 (2001) [Combust., Expl., Shock Waves 37 (3),278–283 (2001)].Google Scholar
  17. 17.
    K. G. Shkadinsky, V. V. Barzykin, “Hot-Surface Ignition of Gases with Allowance for Diffusion and Hydrodynamics,” Fiz. Goreniya Vzryva 4 (2), 176–181 (1968) [Combust., Expl., Shock Waves 4 (2), 100–104 (1968)].Google Scholar
  18. 18.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum, New York, 1969).Google Scholar
  19. 19.
    R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York, 1991).Google Scholar
  20. 20.
    Handbook on Heat Exchangers, Vol. 1 (Energoatomizdat, Moscow, 1987) [in Russian].Google Scholar
  21. 21.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  22. 22.
    Numerical Experiment in the Theory of Solid-Propellant Rocket Motors (Ekaterinburg, Nauka, 1994) [in Russian].Google Scholar
  23. 23.
    A. Yu. Krainov and K. M. Moiseeva, “Modeling of the Flame Propagation in Coal-Dust–Methane–Air Mixture in the Enclosed Sphere Volume,” J. Phys. Conf. Ser. 754, 052003 (2016).CrossRefGoogle Scholar
  24. 24.
    A. N. Kraiko, “Surfaces of Discontinuity in a Medium Devoid of Eigen-Pressue,” 43 (3), 500–510 (1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations