Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 136–146 | Cite as

Numerical Analysis of Hydrogen Sulphide Conversion to Hydrogen during Its Pyrolysis and Partial Oxidation

  • V. A. Savelieva
  • A. M. Starik
  • N. S. Titova
  • O. N. Favorskii
Article
  • 3 Downloads

Abstract

Production of hydrogen during pyrolysis and partial oxidation of hydrogen sulphide is analyzed on the basis of a detailed kinetic model of H2S oxidation. It is shown that the H2 yield in the case of H2S pyrolysis in an adiabatic flow reactor with a residence time of ≈1 s is rather small. Even for the initial temperature of the mixture T0 = 1400 K, the molar fraction of H2 is only 12%, though the equilibrium value is reached within the reactor in this case. At T0< 1200 K, there is no enough time for the chemical equilibrium inside the reactor to be established, and the H2 concentration is lower than the equilibrium value. At T0 < 1000 K, the pyrolysis reaction in the reactor practically does not occur. Addition of a small amount of air to H2S leads to energy release, to an increase in temperature, and, as a consequence, to acceleration of H2S conversion. The relative yield of H2 can be increased by several times. For each value of T0, there exists an optimal value of the fuel-to-air equivalence ratio φ that ensures the maximum H2 yield in the H2S–air mixture. The process of partial oxidation at high values of φ > φb and low values of T0 is essentially nonequilibrium; as a result, the H2 concentration at the exit from a finite-length reactor can be higher than its equilibrium value, e.g., the relative yield of H2 can exceed the equilibrium value by 30–40% at T0 = 800 K and φ = 6–10. The reasons responsible for reaching a “superequilibrium” concentration of H2 at the flow reactor exit are determined.

Keywords

hydrogen production hydrogen sulphide pyrolysis partial oxidation kinetic mechanism simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. M. Khudenko, G. M. Gitman, and E. P. Wechsler, “Oxygen Based Claus Process for Recovery of Sulfur from H2S Gases,” J. Environ. Eng. 119 (6), 1233–1251 (1993).CrossRefGoogle Scholar
  2. 2.
    M. Sassi and A. K. Gupta, “Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC) Technology,” Am. J. Environ. Sci. 4 (5), 502–511 (2008).CrossRefGoogle Scholar
  3. 3.
    X. Zhang, Y. Tang, S. Qu, J. Da, and Z. Hao, “H2S-Selective Catalytic Oxidation: Catalysts and Processes,” ACS Catal. 5 (2), 1053–1057 (2015).CrossRefGoogle Scholar
  4. 4.
    A. A. Adesina, V. Meeyoo, and G. Foulds, “Thermolysis of Hydrogen Sulphide in an Open Tubular Reactor,” Int. J. Hydrogen Energy 20, 777–783 (1995).CrossRefGoogle Scholar
  5. 5.
    K. A. Hawboldt, W. D. Monnery, and W. Y. Svrcek, “New Experimental Data and Kinetic Rate Expression for H2S Pyrolysis and Reassociation,” Chem. Eng. Sci. 55 (3), 957–966 (2000).CrossRefGoogle Scholar
  6. 6.
    K. Sendt, M. Jazbec, and B. S. Haynes, “Chemical Kinetic Modeling of the H/S System: H2S Thermolysis and H2 Sulfidation,” Proc. Combust. Inst. 29, 2439–2446 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Binoist, F. Monnet, P. D. Clark, et al., “Kinetic Study of the Pyrolysis of H2S,” Ind. Eng. Chem. Res. 42, 3943–3951 (2003).CrossRefGoogle Scholar
  8. 8.
    F. G. Cerru, A. Kronenburg, and R. P. Lindstedt, “Systematically Reduced Chemical Mechanisms for Sulfur Oxidation and Pyrolysis,” Combust. Flame 146 (3), 432–455 (2006).CrossRefGoogle Scholar
  9. 9.
    T. Yu. Cong, A. Raj, J. Chanaphet, et al., “A Detailed Reaction Mechanism for Hydrogen Production via Hydrogen Sulphide (H2S) Thermolysis and Oxidation,” Int. J. Hydrogen Energy 41, 6662–6675 (2016).CrossRefGoogle Scholar
  10. 10.
    B. G. Cox, P. F. Clarke, and B. B. Pruden, “Economics of Thermal Dissociation of H2S to Produce Hydrogen,” Int. J. Hydrogen Energy 23 (7), 531–544 (1998).CrossRefGoogle Scholar
  11. 11.
    N. O. Guldal, H. E. Figen, and S. Z. Baykara, “New Catalysts for Hydrogen Production from H2S: Preliminary Results,” Int. J. Hydrogen Energy 40, 7452–7458 (2015).CrossRefGoogle Scholar
  12. 12.
    V. Palma, V. Vaiano, D. Barba, et al., “H2 Production by Thermal Decomposition of H2S in the Presence of Oxygen,” Int. J. Hydrogen Energy 40, 106–113 (2015).CrossRefGoogle Scholar
  13. 13.
    Sulphur Mechanism Extension to the Leeds Methane Mechanism (Leeds University, May 2002); http: //garfield.chem.elte.hu/Combustion/Combustion.html.Google Scholar
  14. 14.
    F. G. Cerru, A. Kronenburg, and R. P. Lindstedt, “Systematically Reduced Chemical Mechanisms for Sulphur Oxidation and Pyrolysis,” Combust. Flame 146, 437–455 (2006).CrossRefGoogle Scholar
  15. 15.
    C. Zhou, K. Sendt, and B. S. Haynes, “Experimental and Kinetic Modelling Study of H2S Oxidation,” Proc. Combust. Inst. 34 (1), 625–632 (2013).CrossRefGoogle Scholar
  16. 16.
    O. Mathieu, F. Deguillaume, and E. L. Petersen, “Effects of H2S Addition on Hydrogen Ignition behind Reflected Shock Waves: Experiments and Modeling,” Combust. Flame 161, 23–36 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Bongartz and A. F. Ghoniem, “Chemical Kinetics Mechanism for Oxy-Fuel Combustion of Mixtures of Hydrogen Sulfide and Methane,” Combust. Flame 162, 544–553 (2015).CrossRefGoogle Scholar
  18. 18.
    A. M. Starik, V. A. Savelieva, A. S. Sharipov, and N. S. Titova, “Enhancement of Hydrogen Sulfide Oxidation via Excitation of Oxygen Molecules to the Singlet Delta State,” Combust. Flame 170, 124–134 (2016).CrossRefGoogle Scholar
  19. 19.
    V. A. Savelieva, N. S. Titova, and A. M. Starik, “Modeling Study of Hydrogen Production via Partial Oxidation of H2S–H2O Blend,” Int. J. Hydrogen Energy 42 (16), 10854–10866 (2017).CrossRefGoogle Scholar
  20. 20.
    M. Frenklach, J. H. Lee, J. N. White, and W. C. Gardiner, Jr., “Oxidation of Hydrogen Sulfide,” Combust. Flame 41, 1–16 (1981).CrossRefGoogle Scholar
  21. 21.
    D. S. Chamberlin and D. R. Clarke, “Flame Speed of Hydrogen Sulfide,” Ind. Eng. Chem. 20, 1016–1019 (1928).CrossRefGoogle Scholar
  22. 22.
    L. Cohen, Fuel 34, S119–S122 (1955).Google Scholar
  23. 23.
    G. J. Gibbs and H. F. Calcote, “Effect of Molecular Structure on Burning Velocity,” J. Chem. Eng. Data 4 (3), 226–237 (1959).CrossRefGoogle Scholar
  24. 24.
    R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN Release 4.0, Reaction Design (San Diego, 2004).Google Scholar
  25. 25.
    O. Mathieu, C. Mulvihill, and E. L. Petersen, “Shock-Tube Water Time-Histories and Ignition Delay Time Measurements for H2S near Atmospheric Pressure,” Proc. Combust. Inst. 36 (3), 4019–4027 (2016).CrossRefGoogle Scholar
  26. 26.
    L. V. Bezgin, V. I. Kopchenov, N. S. Titova, and A. M. Starik, “Numerical Analysis of Combustion of a Hydrogen–Air Mixture in an Advanced Ramjet Combustor Model during Activation of O2 Molecules by Resonant Laser Radiation,” Fiz. Goreniya Vzryva 53 (3), 3–17 (2017) [Combust., Expl., Shock Waves 53 (3), 249–261 (017)].Google Scholar
  27. 27.
    V. E. Kozlov, I. V. Chechet, S. G. Matveev, et al., “Modeling Study of Combustion and Pollutant Formation in HCCI Engine Operating on Hydrogen Rich Fuel Blends,” Int. J. Hydrogen Energy 41 (5), 3689–3700 (2016).CrossRefGoogle Scholar
  28. 28.
    A. Levy and E. L. Merryman, “The Microstructure of Hydrogen Sulphide Flames,” Combust. Flame 9 (3), 229–240 (1965).CrossRefGoogle Scholar
  29. 29.
    K. Karan, A. K. Mehrotra, and L. A. Behie, “On Reaction Kinetics for the Thermal Decomposition of Hydrogen Sulfide,” AIChE J. 45, 383–389 (1999).CrossRefGoogle Scholar
  30. 30.
    A. K. Gupta, S. Ibrahim, and A. Al Shoaibi, “Advances in Sulfur Chemistry for Treatment of Acid Gases,” Prog. Energy Combust. Sci. 54, 65–92 (2016).CrossRefGoogle Scholar
  31. 31.
    A. V. Gladkii, “State of the Art and Prospects of Worldwide Development of Methods for Desulfurization of Industrial Flue Gases,” in Industrial and Sanitary Cleaning of Gases (TSINTIKhimneftemash, Moscow, 1990, Ser. KhM-14) [in Russian].Google Scholar
  32. 32.
    I. Ya. Sigal, E. I. Dombrovskaya, and A. S. Dupak, Methods for Reduction of Emissions of Nitrogen and Sulphur Oxides into the Atmosphere by Electric Power Stations in the USA (Nauch.-Tekh. Soyuz Energ. Elektrotekh. Ukrainy, Kiev, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Savelieva
    • 1
  • A. M. Starik
    • 1
  • N. S. Titova
    • 1
  • O. N. Favorskii
    • 1
  1. 1.Baranov Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations