Combustion, Explosion, and Shock Waves

, Volume 54, Issue 2, pp 125–135 | Cite as

Comparative Analysis of the Chemical Structure of Ethyl Butanoate and Methyl Pentanoate Flames

  • A. M. Dmitriev
  • K. N. Osipova
  • D. A. Knyazkov
  • I. E. Gerasimov
  • A. G. Shmakov
  • O. P. Korobeinichev


The structure of premixed ethyl butanoate/O2/Ar flames stabilized on a flat burner at atmospheric pressure was studied by molecular beam mass spectrometry. Mole fraction profiles of the reactants, stable products, and major intermediates and temperature profiles were obtained in flames of stoichiometric (φ = 1) and rich (φ = 1.5) combustible mixtures. Experimental data are analyzed and compared with previously obtained experimental and numerical data for methyl pentanoate flames. The structure of ethyl butanoate flames is simulated using a detailed literature chemical-kinetic mechanism for the oxidation of fatty acid esters. The experimental profiles are compared with the simulated ones, and the conversion pathways of ethyl butanoate are analyzed. Based on a comparative analysis of experimental and simulated data, the main shortcomings of the model presented in the literature are identified and possible ways are proposed to improve the model. The decomposition of ethyl butanoate and methyl pentanoate are discussed based on an analysis of their conversion pathways; similarities and characteristic differences between their oxidation processes due to the structural differences of the molecules of the fuels are outlined.


flame structure molecular beam mass spectrometry biofuel combustion mechanism. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Agarwal, “Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines,” Prog. Energy Combust. Sci. 33 (3), 233–271 (2007).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Murugesan, C. Umarani, R. Subramanian, and N. Nedunchezhian, “Bio-Diesel As an Alternative Fuel for Diesel Engines—A Review,” Renew. Sustain. Energy Rev. 13 (3), 653–662 (2009).CrossRefGoogle Scholar
  3. 3.
    A. K. Hossain and P. A. Davies, “Plant Oils as Fuels for Compression Ignition Engines: A Technical Review and Life-Cycle Analysis,” Renew. Energy 35 (1), 1–13 (2010).CrossRefGoogle Scholar
  4. 4.
    P. S. Nigam and A. Singh, “Production of Liquid Biofuels from Renewable Resources,” Prog. Energy Combust. Sci. 37 (1), 52–68 (2011).CrossRefGoogle Scholar
  5. 5.
    L. F. Gutiérrez, Ó. J. Sánchez, abd C. A. Cardona, “Process Integration Possibilities for Biodiesel Production from Palm Oil Using Ethanol Obtained from Lignocellulosic Residues of Oil Palm Industry,” Bioresour. Technol. 100 (3), 1227–1237 (2009).CrossRefGoogle Scholar
  6. 6.
    N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, “Bioethanol Production from Agricultural Wastes: An Overview,” Renew. Energy 37 (1), 19–27 (2012).CrossRefGoogle Scholar
  7. 7.
    K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, and P. R. Westmoreland, “Biofuel Combustion Chemistry: From Ethanol to Biodiesel,” Angew. Chem. Int. Ed. 49 (21), 3572–3597 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Y. W. Lai, K. C. Lin, and A. Violi, “Biodiesel Combustion: Advances in Chemical Kinetic Modeling,” Prog. Energy Combust. Sci. 37 (1), 1–14 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Coniglio, H. Bennadji, P. A. Glaude, O. Herbinet, and F. Billaud, “Combustion Chemical Kinetics of Biodiesel and Related Compounds (Methyl and Ethyl Esters): Experiments and Modeling—Advances and Future Refinements,” Prog. Energy Combust. Sci. 39 (4), 340–382 (2013).CrossRefGoogle Scholar
  10. 10.
    W. K. Metcalfe, S. Dooley, H. J. Curran, J. M. Simmie, A. M. El-Nahas, and M. V. Navarro, “Experimental and Modeling Study of C5H10O2 Ethyl and Methyl Esters,” J. Phys. Chem. A 111 (19), 4001–4014 (2007).CrossRefGoogle Scholar
  11. 11.
    W. K. Metcalfe, C. Togbé, P. Dagaut, H. J. Curran, and J. M. Simmie, “A Jet-Stirred Reactor and Kinetic Modeling Study of Ethyl Propanoate Oxidation,” Combust. Flame 156 (1), 250–260 (2009).CrossRefGoogle Scholar
  12. 12.
    B. Akih-Kumgeh and J. M. Bergthorson, “Experimental and Modeling Study of Trends in the High-Temperature Ignition of Methyl and Ethyl Esters,” Energy Fuels 25 (10), 4345–4356 (2011).CrossRefGoogle Scholar
  13. 13.
    W. Ren, R.M. Spearrin, D. F. Davidson, and R. K. Hanson, “Experimental and Modeling Study of the Thermal Decomposition of C3–C5 Ethyl Esters behind Reflected Shock Waves,” J. Phys. Chem. A 118 (10), 1785–1798 (2014).CrossRefGoogle Scholar
  14. 14.
    M. H. Hakka, H. Bennadji, J. Biet, M. Yahyaoui, B. Sirjean, V. Warth, L. Coniglio, O. Herbinet, P. A. Glaude, F. Billaud, and F. Battin-Leclerc, “Oxidation of Methyl and Ethyl Butanoates,” Int. J. Chem. Kinet. 42 (4), 226–252 (2010).CrossRefGoogle Scholar
  15. 15.
    H. Bennadji, P. A. Glaude, L. Coniglio, and F. Billaud, “Experimental and Kinetic Modeling Study of Ethyl Butanoate Oxidation in a Laminar Tubular Plug Flow Reactor,” Fuel 90 (11), 3237–3253 (2011).CrossRefGoogle Scholar
  16. 16.
    L. Gasnot, V. Decottignies, and J. F. Pauwels, “Ethyl Acetate Oxidation in Flame Condition: An Experimental Study,” Fuel 83 (4–5), 463–470 (2004).CrossRefGoogle Scholar
  17. 17.
    W. R. Schwartz, C. S. McEnally, and L. D. Pfefferle, “Decomposition and Hydrocarbon Growth Processes for Esters in Non-Premixed Flames,” J. Phys. Chem. A 110 (21), 6643–6648 (2006).CrossRefGoogle Scholar
  18. 18.
    P. Osswald, U. Struckmeier, T. Kasper, K. Kohse-Höinghaus, J. Wang, T. A. Cool, N. Hansen, and P. R. Westmoreland, “Isomer-Specific Fuel Destruction Pathways in Rich Flames of Methyl Acetate and Ethyl Formate and Consequences for the Combustion Chemistry of Esters,” J. Phys. Chem. A 111 (19), 4093–4101 (2007).CrossRefGoogle Scholar
  19. 19.
    C. K. Westbrook, W. J. Pitz, P. R. Westmoreland, F. L. Dryer, M. Chaos, P. Osswald, K. Kohse-Höinghaus, T. A. Cool, J. Wang, B. Yang, N. Hansen, and T. Kasper, “A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames,” Proc. Combust. Inst. 32 (1), 221–228 (2009).CrossRefGoogle Scholar
  20. 20.
    B. Yang, C. K. Westbrook, T. A. Cool, N. Hansen, and K. Kohse-Höinghaus, “Fuel-Specific Influences on the Composition of Reaction Intermediates in Premixed Flames of Three C5H10O2 Ester Isomers,” Phys. Chem. Chem. Phys. 13 (15), 6901–6913 (2011).CrossRefGoogle Scholar
  21. 21.
    B. Yang, C. K. Westbrook, T. A. Cool, N. Hansen, and K. Kohse-Höinghaus, “Photoionization Mass Spectrometry and Modeling Study of Premixed Flames of Three Unsaturated C5H8O2 Esters,” Proc. Combust. Inst. 34 (1), 443–451 (2013).CrossRefGoogle Scholar
  22. 22.
    C. K. Westbrook et al., “Detailed Chemical Kinetic Reaction Mechanisms for Soy and Rapeseed Biodiesel Fuels,” Combust. Flame 158 (4), 742–755 (2011).CrossRefGoogle Scholar
  23. 23.
    O. Herbinet, J. Biet, M. H. Hakka, V. Warth, P.-A. Glaude, A. Nicolle, and F. Battin-Leclerc, “Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19,” Proc. Combust. Inst. 33 (1), 391–398 (2011).CrossRefGoogle Scholar
  24. 24.
    O. P. Korobeinichev, I. E. Gerasimov, D. A. Knyazkov, A. G. Shmakov, T. A. Bolshova, N. Hansen, C. K. Westbrook, G. Dayma, and B. Yang, “An Experimental and Kinetic Modeling Study of Premixed Laminar Flames of Methyl Pentanoate and Methyl Hexanoate,” Z. Phys. Chem. 229 (5), 759–780 (2015).CrossRefGoogle Scholar
  25. 25.
    D. A. Knyazkov, N. A. Slavinskaya, A. M. Dmitriev, A. G. Shmakov, O. P. Korobeinichev, and U. Riedel, “Structure of an n-Heptane/Toluene Flame: Molecular Beam Mass Spectrometry and Computer Simulation Investigations,” Fizika Goreniya Vzryva 52 (2), 21–34 (2016) [Combust., Expl., Shock Waves 52 (2), 142–154 (2016)].Google Scholar
  26. 26.
    T. A. Cool, K. Nakajima, C. A. Taatjes, A. McIlroy, P. R. Westmoreland, M. E. Law, and A. Morel, “Studies of a Fuel-Rich Propane Flame with Photoionization Mass Spectrometry,” Proc. Combust. Inst. 30 (1), 1681–1688 (2005).CrossRefGoogle Scholar
  27. 27.
    Y.-K. Kim, K. K. Irikura, M. E. Rudd, M. A. Ali, P. M. Stone, J. Chang, J. S. Coursey, R. A. Dragoset, A. R. Kishore, K. J. Olsen, A. M. Sansonetti, G. G. Wiersma, D. S. Zucker, and M. A. Zucker, NIST Standard Reference Database of Total Ionization Cross Sections of Atoms and Molecules by Electron Impact (2005); Scholar
  28. 28.
    W. E. Kaskan, “The Dependence of Flame Temperature on Mass Burning Velocity,” Symp. Int. Combust. 6 (1), 134–143 (1957).CrossRefGoogle Scholar
  29. 29.
    C. R. Shaddix, “Correcting Thermocouple Measurements for Radiation Loss: A Critical Review,” in Proc. 33rd National Heat Transfer Conf., HTD99-282 (Albuquerque, New Mexico, 1999).Google Scholar
  30. 30.
    R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, and E. Meeks, “PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Sandia National Laboratories Report SAND85-8240 (1985); Scholar
  31. 31.
    R. J. Kee, F. M. Rupley, and J. A. Miller, One-Dimensional Premixed Laminar Flame Code, CHEMKIN-II Version 2.5b (1992).Google Scholar
  32. 32.
    G. Dayma, F. Halter, F. Foucher, C. Togbé, C. Mounaim-Rousselle, and P. Dagaut, “Experimental and Detailed Kinetic Modeling Study of Ethyl Pentanoate (Ethyl Valerate) Oxidation in a Jet Stirred Reactor and Laminar Burning Velocities in a Spherical Combustion Chamber,” Energy Fuels 26 (8), 4735–4748 (2012).CrossRefGoogle Scholar
  33. 33.
    G. Dayma, C. Togbé, and P. Dagaut, “Experimental and Modeling Study of Methyl Pentanoate Oxidation,” in CM0901 3rd Annual Meeting, General Meeting in Nancy, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Dmitriev
    • 1
    • 2
  • K. N. Osipova
    • 1
    • 2
  • D. A. Knyazkov
    • 1
    • 3
  • I. E. Gerasimov
    • 1
  • A. G. Shmakov
    • 1
    • 2
  • O. P. Korobeinichev
    • 1
  1. 1.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of ScienceNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations