Skip to main content
Log in

Investigation of Nickel Aluminide Formed Due to Shock Loading of Aluminum–Nickel Mixtures in Flat Recovery Ampoules

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Detailed results of an x-ray diffraction analysis of equimolar mixtures of nickel and aluminum with different particle sizes before and after shock loading in flat recovery ampoules are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diagrams of State of Bimetallic Systems: Reference Book, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].

  2. A. J. Bradley and A. Taylor, Proc. Roy. Soc. London A 159, 56 (1937).

    Article  ADS  Google Scholar 

  3. C. A. Alexander, J. S. Ogden, S. M. Risser, and E. van Wood, “Thermodynamic Characterization of NiAl,” J. Chem. Thermodyn. 41, 610–616 (2009).

    Article  Google Scholar 

  4. A. Hadjiafxenti, I. E. Gunduz, C. Tsotsos, et al., “The Influence of Structure on Thermal Behavior of Reactive Al–Ni Powder Mixtures Formed by Ball Milling,” J. Alloys Compounds 505, 467–471 (2010).

    Article  Google Scholar 

  5. A. Hadjiafxenti, I. E. Gunduz, T. Kyratsi, et al., “Exothermic Reaction Characteristics of Continuously Ball-Milled Al/Ni Powder Compacts,” Vacuum 96, 73–78 (2013).

    Article  ADS  Google Scholar 

  6. M. R. Sharafutdinov, M. A. Korchagin, N. F. Shkodich, et al., “Phases Transformations in the Ni–Al System Investigation by Synchrotron Radiation Diffraction,” Nucl. Instrum. Methods Phys. Res. A575, 149–151 (2007).

    Article  ADS  Google Scholar 

  7. K. Morsi, S. Shinde, and E. A. Olevsky, “Self-Propagating High-Temperature Synthesis (SHS) of Rotator Mixed and Mechanically Alloyed Ni/Al Powder Compacts,” J. Mater. Sci. 41, 5699–5703 (2006).

    Article  ADS  Google Scholar 

  8. A. S. Mukasyan, B. B. Khina, R. V. Reeves, and S. F. Son, “Mechanical Activation and Gasless Explosion: Nanostructural Aspects,” Chem. Eng. J. 174, 677–686 (2011).

    Article  Google Scholar 

  9. A. S. Rogachev, N. F. Shkodich, S. G. Vadchenko, et al., “Influence of the High Energy Ball Milling on Structure and Reactivity of the Ni + Al Powder Mixture,” J. Alloys Compounds 577, 600–605 (2013).

    Article  Google Scholar 

  10. A. Hadjiafxenti, I. E. Gunduz, C. C. Doumanidis, and C. Rebholz, “Spark Ignitable Ball Milled Powders of Al and Ni at NiAl Composition,” Vacuum 101, 275–278 (2014).

    Article  ADS  Google Scholar 

  11. N. A. Kochetov, “Mechanoactivation of Ni—Al Blends in a Ball Mill: Influence of Ball/Mill Ratio,” Int. J. Self-Propag. High-Temp. Synth. 24 (1), 29–32 (2015).

    Article  MathSciNet  Google Scholar 

  12. J. Wong, E. M. Larson, J. B. Holt, et al., “Time- Resolved X-ray Diffraction Study of Solid Combustion Reactions,” Science 249, 1406–1409 (1990).

    Article  ADS  Google Scholar 

  13. M. Sharafutdinov, V. Alexandrov, O. Evdokov, et al., “The Study of Ni+Al Self-Propagating High Temperature Synthesis Using Synchrotron Radiation and a Two-Dimensional DED-5 Detector,” J. Synchr. Rad. 10, 384–386 (2003).

    Article  Google Scholar 

  14. C. Curfs, X. Turrillas, G. B. M. Vaughan, et al., “Al–Ni Intermetallics Obtained by SHS; A Time-Resolved Xray Diffraction Study,” Intermetallics 15, 1163–1171 (2007).

    Article  Google Scholar 

  15. X. Turrillas, M. J. Mas-Guindal, T. C. Hansen, and M. A. Rodriguez, “The Thermal Explosion Synthesis of AlNi Monitored by Neutron Thermodiffractometry,” Acta Materialia 58, 2769–2777 (2010).

    Article  Google Scholar 

  16. A. S. Mukasyan, J. D. E. White, D. Y. Kovalev, et al., “Dynamics of Phase Transformation during Thermal Explosion in the Al–Ni System: Influence of Mechanical Activation,” Physica B 405, 778–784 (2010).

    Article  ADS  Google Scholar 

  17. P. Zhu, J. C. M. Li, and C. T. Liu, “Reaction Mechanism of Combustion Synthesis of NiAl,” Mater. Sci. Eng. A329-331, 57–68 (2002).

    Article  Google Scholar 

  18. S. Arroussi, M. Ali-Rachedi, Ch. Abdelbaki, et al., “Synthesis of Nanocrystalline NiAl by Mechanically Activated Self-Propagating High-Temperature Synthesis and Mechanically Activated Annealing Process,” Eur. Phys. J. Appl. Phys. 64, 30401 (2013).

    Article  ADS  Google Scholar 

  19. J. D. E. White, R. V. Reeves, S. F. Son, and A. S. Mukasyan, “Thermal Explosion in Al–Ni System: Influence of Mechanical Activation,” J. Phys. Chem. A 113, 13541–13547 (2009).

    Article  Google Scholar 

  20. R. V. Reeves, A. S. Mukasyan, and S. F. Son, “Thermal and Impact Reaction Initiation in Ni/Al Heterogeneous Reactive Systems,” J. Phys. Chem. C 114, 14772–14780 (2010).

    Article  Google Scholar 

  21. E. M. Hunt and M. L. Pantoya, “Impact Sensitivity of Intermetallic Nanocomposites: A Study on Compositional and Bulk Density,” Intermetallics 18, 1612–1616 (2010).

    Article  Google Scholar 

  22. E. B. Herbold, J. L. Jordan, and N. N. Thadhani, “Effects of Processing and Powder Size on Microstructure and Reactivity in Arrested Reactive Milled Al + Ni,” Acta Materialia 59, 6717–6728 (2011).

    Article  Google Scholar 

  23. S. W. Dean, J. K. Potter, R. A. Yetter, et al., “Energetic Intermetallic Materials Formed by Cold Spray,” Intermetallics 43, 121–130 (2013).

    Article  Google Scholar 

  24. O. Politano, F. Baras, A. S. Mukasyan, et al., “Microstructure Development during NiAl Intermetallic Synthesis in Reactive Ni–Al Nanolayers: Numerical Investigations vs. TEM Observations,” Surf. Coatings Technol. 215, 485–492 (2013).

    Article  Google Scholar 

  25. A. S. Rogachev, S. G. Vadchenko, F. Baras, et al., “Structure Evolution and Reaction Mechanism in the Ni/Al Reactive Multilayer Nanofoils,” Acta Mater. 66, 86–96 (2014).

    Article  Google Scholar 

  26. L. Thiers, A. S. Mukasyan, and A. Varma, “Thermal Explosion in Ni–Al System: Influence of Reaction Medium Microstructure,” Combust. Flame 131, 198–209 (2002).

    Article  Google Scholar 

  27. V. S. Trofimov, “Dynamic Method of Investigating Relaxation Processes,” Fiz. Goreniya Vzryva 17 (5), 93–101 (1981) [Combust. Expl., Shock Waves 17 (5), 564–570 (1981)].

    Google Scholar 

  28. A. G. Merzhanov, Yu. A. Gordopolov, and V. S. Trofimov, “On the Possibility of Gas Free Detonation in Condensed Systems,” Shock Waves 6, 157–159 (1996).

    Article  ADS  MATH  Google Scholar 

  29. Yu. A. Gordopolov, S. S. Batsanov, and V. S. Trofimov, “Shock-Induced Solid-Solid Reactions and Detonations,” in Shock Wave Science and Technology Reference Library: Heterogeneous Detonation, Ed. by F. Zhang (Springer-Verlag, Berlin–Heidelberg, 2009), pp. 287–314.

    Google Scholar 

  30. Y. Horie, R. A. Graham, and I. K. Simonsen, “Synthesis of Nickel Aluminides under High-Pressure Shock Loading,” Mater. Lett. 3 (9/10), 354–359 (1985).

    Article  Google Scholar 

  31. S. Yu. Ananev, A. A. Deribas, A. A. Drozdov, et al., “Dynamic Compaction of Ni and Al Micron Powder Blends in Cylindrical Recovery Scheme,” J. Phys.: Conf. Ser. (JPCS) 653 (1), 12037–12040 (2015).

    Google Scholar 

  32. G. A. Adadurov, “Experimental Study of Chemical Processes under Conditions of Dynamic Compression,” Usp. Khim. 55 (4), 555–578 (1986).

    Article  Google Scholar 

  33. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  34. A. N. Zhigach, M. L. Kuskov, I. O. Leipunskii, et al., “Obtaining Ultradisperse Metal Powders, Alloys, and Compounds by the Gen–Miller Method: Story, State of the Art, Prospects,” Ross. Nanotekhnol. 7 (3–4) (2012).

    Google Scholar 

  35. A. Yu. Dolgoborodov, “Mechanically Activated Oxidizer–Fuel Energetic Composites,” Fiz. Goreniya Vzryva 51 (1), 102–116 (2015) [Combust., Expl., Shock Waves 51 (1), 86–99 (2015)].

    Google Scholar 

  36. L. M. Kovba, X-ray Diffraction Analysis in Inorganic Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  37. G. K. Williamson and W. H. Hall, “X-ray Line Broadening from Filed Aluminium and Wolfram,” Acta Metallurg. 1, 22–31 (1953).

    Article  Google Scholar 

  38. Powder Diffraction Theory and Practice, Ed. by R. E. Dinnebier and S. J. L. Billinge (The Roy. Soc. of Chem., Cambridge, 2008).

  39. S. V. Tsybulya and S. V. Cherepanova, Introduction into Structural Analysis of Nanocrystals (Izd. Novosib. Gos. Univ., Novosibirsk, 2009) [in Russian].

    Google Scholar 

  40. A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Report LAUR 86-748 (Los Alamos National Laboratory, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zhukov.

Additional information

Original Russian Text © A.N. Zhukov, V.A. Yakushev, S.Yu. Ananev, V.V. Dobrygin, A.Yu. Dolgoborodov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.N., Yakushev, V.A., Ananev, S.Y. et al. Investigation of Nickel Aluminide Formed Due to Shock Loading of Aluminum–Nickel Mixtures in Flat Recovery Ampoules. Combust Explos Shock Waves 54, 64–71 (2018). https://doi.org/10.1134/S0010508218010100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218010100

Keywords

Navigation