Skip to main content
Log in

Application and properties of nanometric HMX in PBX

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A nanometric HMX-based polymer-bonded explosive (PBX) is prepared by using the solution-water slurry technique. The resultant PBX is composed of 94% of HMX, 5% of fluororubber Viton, and 1% of wax. The properties of the nanometric HMX-based PBX, such as sensitivity and compressive performance, are comprehensively researched. The results show significant improvement for the nanometric HMX-based PBX as compared to the micron-sized HMX-based PBX. The friction sensitivity, impact sensitivity, and shock sensitivity of the nanometric HMX-based PBX are obviously lower by 30, 48, and 24%, respectively. Moreover, the compressive strength and strain of the nanometric HMX-based PBX are significantly higher by 273 and 33%, respectively. Thus, both the safety and mechanical resistibility of the PBX will significantly benefit from using nanometric HMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. L. Yan, S. Zeman, and A. Elbeih, “Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives (PBXs),” Thermochim. Acta 537, 1–12 (2012).

    Article  Google Scholar 

  2. B. Nouguez, B. Mahe, and P. O. Vignaud, “Cast PBX Related Technologies for IM Shells and Warheads,” Sci. Technol. Energ. Mater. 70 (5–6), 135–139 (2009).

    Google Scholar 

  3. R. Menikoff, “Comparison of Constitutive Models for Plastic-Bonded Explosives,” Combust. Theory Model. 12 (1), 73–91 (2008).

    Article  ADS  MATH  Google Scholar 

  4. M. Jaidann, H. Abou, X. Lafleur, et al., “Atomistic Studies of RDX and FOX-7-Based Plastic-Bonded Explosives: Molecular Dynamics Simulation,” Procedia Comp. Sci. 4, 1177–1185 (2011).

    Article  Google Scholar 

  5. A. S. Kumar, V. B. Rao, R. K. Sinha, et al., “Evaluation of Plastic Bonded Explosive (PBX) Formulations Based on RDX, Aluminum, and HTPB for Underwater Applications,” Propell., Explos., Pyrotech. 35 (4), 359–364 (2010).

    Article  Google Scholar 

  6. S. S. Samudre, U. R. Nair, G. M. Gore, et al., “Studies on an Improved Plastic Bonded Explosive (PBX) for Shaped Charges,” Propell., Explos., Pyrotech. 34 (2), 145–150 (2009).

    Article  Google Scholar 

  7. W. Zhang, X. Z. Fan, H. J. Wei, et al., “Application of Nitramines Coated with Nitrocellulose in Minimum Signature Isocyanate-Cured Propellants,” Propell., Explos., Pyrotech. 33 (4), 279–285 (2008).

    Article  Google Scholar 

  8. J. R. Luman, B. Wehrman, K. K. Kuo, et al., “Development and Characterization of High Performance Solid Propellants Containing Nano-Sized Energetic Ingredients,” Proc. Combust. Inst. 31 (2), 2089–2096 (2007).

    Article  Google Scholar 

  9. R. S. Damse, A. Singh, and H. Singh, “High Energy Propellants for Advanced Gun Ammunition Based on RDX, GAP and TAGN Compositions,” Propell., Explos., Pyrotech. 32 (1), 52–60 (2007).

    Article  Google Scholar 

  10. V. A. Strunin and L. I. Nikolaeva, “Combustion Mechanism of RDX and HMX and Possibilities of Controlling the Combustion Characteristics of Systems Based on Them,” Fiz. Goreniya Vzryva 49 (1), 62–73 (2013) [Combust., Expl., Shock Waves 49 (1), 53–63 (2013)].

    Google Scholar 

  11. E. Landsem, T. L. Jensen, F. K. Hansen, et al., “Neutral Polymeric Bonding Agents (NPBA) and Their use in Smokeless Composite Rocket Propellants Based on HMX-GAP-BuNENA,” Propell., Explos., Pyrotech. 37 (5), 581–591 (2012).

    Article  Google Scholar 

  12. R. Dubey, P. Srivastava, I. P. S. Kapoor, et al., “Synthesis, Characterization and Catalytic Behavior of Cu Nanoparticles on the Thermal Decomposition of AP, HMX, NTO and Composite Solid Propellants, Part 83,” Thermochim. Acta 549, 102–109 (2012).

    Article  Google Scholar 

  13. Q. L. Yan, X. J. Li, Y. Wang, et al., “Combustion Mechanism of Double-Base Propellant Containing Nitrogen Heterocyclic Nitroamines (I): The Effect of Heat and Mass Transfer to the Burning Characteristics,” Combust. Flame 156 (3), 633–641 (2009).

    Article  Google Scholar 

  14. C. W. An, F. S. Li, J. Y. Wang, et al., “Surface Coating of Nitroamine Explosives and its Effects on the Performance of Composite Modified Double-Base Propellants,” J. Propul. Power 28 (2), 444–448 (2012).

    Article  Google Scholar 

  15. X. L. Xing, F. Q. Zhao, S. N. Ma, et al., “Thermal Decomposition Behavior, Kinetics, and Thermal Hazard Evaluation of CMDB Propellant Containing CL-20 by Microcalorimetry,” J. Therm. Anal. Calorimetry 110 (3), 1451–1455 (2011).

    Article  Google Scholar 

  16. C. N. Divekar, R. R. Sanghavi, U. R. Nair, et al., “Closed-Vessel and Thermal Studies on Triple-Base Gun Propellants Containing CL-20,” J. Propul. Power 26 (1), 120–124 (2010).

    Article  Google Scholar 

  17. S. Y. Xu, F. Q. Zhao, J. H. Yi, et al., “Thermal Behavior and Non-Isothermal Decomposition Reaction Kinetics of Composite Modified Double Base Propellant Containing CL-20,” Acta Phys.-Chim. Sinica 24 (8), 1371–1377 (2008).

    Google Scholar 

  18. X. L. Song and F. S. Li, “Dependence of Particle Size and Size Distribution on Mechanical Sensitivity and Thermal Stability of Hexahydro-1, 3, 5-Trinitro-1, 3, 5-Triazine,” Defence Sci. J. 59 (1), 37–42 (2009).

    Article  Google Scholar 

  19. X. L. Song, F. S. Li, J. L. Zhang, et al., “Influence of Particle Size, Morphology and Size Distribution on the Safety and Thermal Decomposition Properties of RDX,” J. Solid Rocket Technol. 31 (2), 168–172 (2008).

    Google Scholar 

  20. X. L. Song, Y. Wang, C. W. An, et al., “Dependence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine,” J. Hazard. Mater. 159 (2-3), 222–229 (2008).

    Article  Google Scholar 

  21. C. R. Siviour, M. J. Gifford, S. M. Walley, et al., “Particle Size Effects on the Mechanical Properties of a Polymer Bonded Explosive,” J. Mater. Sci. 39 (4), 1255–1258 (2004).

    Article  ADS  Google Scholar 

  22. J. Liu, W. Jiang, F. S. Li, et al., “Preparation and Study on Nano Octahydro-1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocine,” Acta Armamentarii 34 (2), 174–180 (2013).

    Google Scholar 

  23. J. Liu, W. Jiang, F. S. Li, et al., “Effect of Drying Conditions on the Particle Size, Dispersion State, and Mechanical Sensitivities of Nano HMX,” Propell., Explos., Pyrotech. 39 (1), 30–39 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Additional information

Original Russian Text © J. Liu, G. Hao, Yu. Rong, L. Xiao, W. Jiang, F. Li, Ch. Jing, H. Gao, T. Chen, and X. Ke.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 6, pp. 138–143, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hao, G., Rong, Y. et al. Application and properties of nanometric HMX in PBX. Combust Explos Shock Waves 53, 744–749 (2017). https://doi.org/10.1134/S001050821706017X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821706017X

Keywords

Navigation