Skip to main content
Log in

Exit of a heterogeneous detonation wave into a channel with linear expansion. I. Propagation regimes

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Propagation of a plane detonation wave in a stoichiometric mixture of a gas and aluminum particles in a plane channel with a linear expansion section is studied by methods of numerical simulation. The slope of the wall is varied from 15 to 60°. The basic regimes of detonation propagation are analyzed: supercritical (without detonation failure), critical (with partial failure and re-initiation), and subcritical (with complete separation of the shock front and combustion front and with detonation failure). The detonation configuration formed in the expanding section can be a cellular structure with large differences in cell sizes at large angles of expansion or a close-to-uniform structure at the wall angle of 15°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Fedorov, Yu. V. Kratova, and T. A. Khmel’, “Numerical Study of Shock-Wave Diffraction in Variable-Section Channels in Gas Suspensions,” Fiz. Goreniya Vzryva 44 (1), 85–95 (2008) [Combust., Expl., Shock Waves 44 (1), 76–85 (2008)].

    MATH  Google Scholar 

  2. A. V. Fedorov, T. A. Khmel, and Y. V. Kratova, “Shock and Detonation Wave Diffraction at a Sudden Expansion in Gas–Particle Mixtures,” Shock Waves 18, 280–290 (2008).

    ADS  MATH  Google Scholar 

  3. Yu. V. Kratova, A. V. Fedorov, and T. A. Khmel’, “Diffraction of a Plane Detonation Wave on a Back-Facing Step in a Gas Suspension,” Fiz. Goreniya Vzryva 45 (5), 95–107 (2009) [Combust., Expl., Shock Waves 45 (5), 591–602 (2009)].

    Google Scholar 

  4. A. V. Fedorov, T. A. Khmel, and Y. V. Kratova, “Cellular Detonation Diffraction in Gas–Particle Mixtures,” Shock Waves, 20 (6), 509–519 (2010).

    Article  ADS  MATH  Google Scholar 

  5. Yu. V. Kratova, A. V. Fedorov, and T. A. Khmel’, “Propagation of Detonation Waves in Gas Suspensions in Channels with a Backward-Facing Step,” Fiz. Goreniya Vzryva 47 (1), 80–91 (2011) [Combust., Expl., Shock Waves 47 (1), 70–80 (2011)].

    Google Scholar 

  6. Yu. V. Kratova, A. V. Fedorov, and T. A. Khmel’, “Specific Features of Cellular Detonation in Polydisperse Suspensions of Aluminum Particles in a Gas,” Fiz. Goreniya Vzryva 47 (5), 85–94 (2011) [Combust., Expl., Shock Waves 47 (5), 572–580 (2011)].

    Google Scholar 

  7. A. V. Fedorov, V. M. Fomin, and T. M. Khmel’, Wave Processes in Gas Suspensions of Metal Particles (Parallel, Novosibirsk, 2015) [in Russian].

    Google Scholar 

  8. Yu. V. Kratova, T. A. Khmel’, and A. V. Fedorov, “Axisymmetric Expanding Heterogeneous Detonation in Gas Suspensions of Aluminum Particles,” Fiz. Goreniya Vzryva 52 (1), 84–95 (2016) [Combust., Expl., Shock Waves 52 (1), 74–84 (2016)].

    Google Scholar 

  9. A. V. Fedorov, V. M. Fomin, and Yu. A. Gosteev, Dynamics and Ignition of Gas Suspensions (Izd. NGTU, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  10. A. V. Fedorov and T. A. Khmel’, “Characteristics and Criteria of Ignition of Suspensions of Aluminum Particles in Detonation Processes,” Fiz. Goreniya Vzryva 48 (2), 76–88 (2012) [Combust., Expl., Shock Waves 48 (2), 191–202 (2012)].

    Google Scholar 

  11. V. V. Mitrofanov and R. I. Soloukhin, “On the Diffraction of a Multifront Detonation Wave,” Dokl. Akad. Nauk SSSR 159 (5), 1003–1006 (1964).

    Google Scholar 

  12. A. A. Vasil’ev, “Critical Conditions for Initiation of Cylindrical Multifront Detonation,” Fiz. Goreniya Vzryva 34 (2), 114–120 (1998) [Combust., Expl., Shock Waves 34 (2), 220–225 (1998)].

    Google Scholar 

  13. A. A. Vasil’ev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation Waves in Gases,” Fiz. Goreniya Vzryva 23 (5), 109–131 (1987) [Combust., Expl., Shock Waves 23 (5), 605–623 (1987)].

    Google Scholar 

  14. G. O. Thomas and R. L. Williams, “Detonation Interaction withWedges and Bends,” ShockWaves 11, 481–492 (2002).

    ADS  Google Scholar 

  15. C. Conrad, S. R. Saretto, S.-Y. Lee, and R. J. Santoro, “Overdriven Detonation Wave Transition in a Gradual Area Expansion for Multicycle PDE Application,” in Pulse and Continuous Detonation Propulsion, Ed. by G. Roy and S. Frolov (Torus Press, Moscow, 2006), pp. 273–286.

    Google Scholar 

  16. Q. Qing, C. K. Boo, D. Hua-Shu, and M. T. Her, “The Evolution of a Detonation Wave in a Variable Cross-Sectional Chamber,” Shock Waves 18, 213–233 (2008).

    Article  ADS  MATH  Google Scholar 

  17. B. Khasainov, H. N. Presles, D. Desbordes, P. Demontis, and P. Vidal, “Detonation Diffraction from Circular Tubes to Cones,” Shock Waves 14, 187–192 (2005).

    Article  ADS  Google Scholar 

  18. A. A. Vasil’ev and A. V. Trotsyuk, “Experimental Investigation and Numerical Simulation of an Expanding Multifront Detonation Wave,” Fiz. Goreniya Vzryva 39 (1), 92–103 (2003) [Combust., Expl., Shock Waves 39 (1), 80–90 (2003)].

    Google Scholar 

  19. A. V. Fedorov, “Structure of the Heterogeneous Detonation of Aluminum Particles Dispersed in Oxygen,” Fiz. Goreniya Vzryva 28 (3), 72–83 (1992) [Combust., Expl., Shock Waves 28 (3), 277–286 (1992)].

    Google Scholar 

  20. W. A. Strauss, “Investigation of the Detonation of Aluminum Powder-Oxygen Mixtures,” AIAA J. 6 (9), 1753–1761 (1968).

    Article  ADS  Google Scholar 

  21. A. V. Fedorov and T. A. Khmel’, “Numerical Technologies for Studying Heterogeneous Detonation in Gas Suspensions,” Mat. Model. 18 (8), 49–63 (2006).

    MATH  MathSciNet  Google Scholar 

  22. G. V. Bazhenova, Unsteady Interactions of Shock Waves and Detonation Waves in Gases (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  23. H. O. Barthel, “Predicted Spacings in Hydrogen–Oxygen–Argon Detonations,” Phys. Fluids 17 (8), 1547–1553 (1974).

    Article  ADS  Google Scholar 

  24. A. V. Fedorov and T. A. Khmel’, “Numerical Simulation of Formation of Cellular Heterogeneous Detonation of Aluminum Particles in Oxygen,” Fiz. Goreniya Vzryva 41 (4), 84–98 (2005) [Combust., Expl., Shock Waves 41 (4), 435–448 (2005)].

    Google Scholar 

  25. A. V. Fedorov and T. A. Khmel’, “Formation and Degeneration of Cellular Detonation in Bidisperse Gas Suspensions of Aluminum Particles,” Fiz. Goreniya Vzryva 44 (3), 109–120 (2008) [Combust., Expl., Shock Waves 44 (3), 343–353 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorov.

Additional information

Original Russian Text © A.V. Fedorov, T.A. Khmel’, S.A. Lavruk.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 5, pp. 104–114, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Khmel’, T.A. & Lavruk, S.A. Exit of a heterogeneous detonation wave into a channel with linear expansion. I. Propagation regimes. Combust Explos Shock Waves 53, 585–595 (2017). https://doi.org/10.1134/S0010508217050136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217050136

Keywords

Navigation