Skip to main content
Log in

Study on flame structures and emissions of CO and NO in Various CH4/O2/N2–O2/N2 counterflow premixed flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An oxygen-diluted partially premixed/oxygen-enriched supplemental combustion (ODPP/OESC) counterflow flame is studied in this paper. Flame images are obtained through experiments and numerical simulations with the GRI-Mech 3.0 chemistry. The oxygen dilution effects are revealed by comparing the flame structures and emissions with those of a premixed flame and partially premixed flame (PPF) at the same equivalence ratio (ϕΣ = 0.95 and ϕ f = 1.4). The results show that both PPF and ODPP/OESC flames have distinct double flame structures; however, the location of the premixed combustion zone and the distance between premixed/nonpremixed combustion zone are significantly different for these two cases. For the ODPP/OESC flame, the temperature in the premixed combustion zone is lower and the premixed zone itself is located farther downstream from the fuel nozzle, which leads to reduction of NO and CO emissions, as compared to those of the PPF. Therefore, by adjusting the distribution of the oxygen concentration in the premixed and nonpremixed combustion zones, the ODPP/OESC can effectively balance the chemical reaction rate in the entire combustion zone and, consequently, reduce emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cònsul, A. Oliva, C. D. Pérez-Segarra, D. Carbonell, and L. P. H. Goey, “Analysis of the Flamelet Concept in the Numerical Simulation of Laminar Partially Premixed Flames,” Combust. Flame 153, 71–83 (2008).

    Article  Google Scholar 

  2. V. Dupont and A. Williams, “NOx Mechanisms in Rich Methane–Air Flames,” Combust. Flame 114, 103–118 (1998).

    Article  Google Scholar 

  3. M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, “NO Emission Characteristics of Methane–Air Double Flame,” Combust. Flame 98, 127–138 (1994).

    Article  Google Scholar 

  4. L. G. Blevins and J. P. Gore, “Computed Structure of Low Strain Rate Partially Premixed CH4/Air Counterflow Flames: Implications for NO Formation,” Combust. Flame 116, 546–566 (1999).

    Article  Google Scholar 

  5. R. V. Ravikrishna and N. M. Laurendeau, “Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Partially Premixed Flames,” Combust. Flame 122, 474–482 (2000).

    Article  Google Scholar 

  6. F. A. Williams, “Progress in Knowledge of Flamelet Structure and Extinction,” Prog. Energy Combust. Sci. 26, 657–682 (2000).

    Article  Google Scholar 

  7. H. Mungekar and A. Atreya, “NO Formation in Counterflow Partially Premixed Flames,” Combust. Flame 148, 148–157 (2007).

    Article  Google Scholar 

  8. T. K. Mishra, A. Datta, and A. Mukhopadhyay, “Comparison of the Structures of Methane–Air and Propane–Air Partially Premixed Flames,” Fuel 85, 1254–1263 (2006).

    Article  Google Scholar 

  9. P. Berta, I. K. Puri, and S. K. Aggarwal, “Structure of Partially Premixed n-Heptane–Air Counterflow Flames,” Proc. Combust. Inst. 30, 447–453 (2005).

    Article  Google Scholar 

  10. H. Machrafi, S. Cavadias, and P. Guibert, “An Experimental and Numerical Investigation on the Influence of External Gas Recirculation on the HCCI Autoignition Process in an Engine: Thermal, Diluting, and Chemical Effects,” Combust. Flame 155, 476–489 (2008).

    Article  Google Scholar 

  11. M. Fathi, R. K. Saray, and M. D. Checkel, “The Influence of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of n-Heptane/Natural Gas Fueled Homogeneous Charge Compression Ignition (HCCI) Engines,” Appl. Energy 88, 4719–4724 (2011).

    Article  Google Scholar 

  12. J. Mi, P. F. Li, B. B. Dally, and R. A. Craig, “Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace,” Energy Fuels 23, 5349–5356 (2009).

    Article  Google Scholar 

  13. A. A. Konnov, I. V. Dyakov, and J. Ruyck, “The Effects of Composition on the Burning Velocity and NO Formation in Premixed Flames of C2H4 + O2 + N2,” Exp. Therm. Fluid Sci. 32, 1412–1420 (2008).

    Article  Google Scholar 

  14. R. N. Roy and S. Sreedhara, “A Numerical Study on the Influence of Airstream Dilution and Jet Velocity on NO Emission Characteristics of CH4 and DME Bluff-Body Flames,” Fuel 142, 73–80 (2015).

    Article  Google Scholar 

  15. Z. S. Wang, H. B. Zuo, Z. C. Liu, W. F. Li, and H. L. Dou, “Impact of N2 Dilution on Combustion and Emissions in a Spark Ignition CNG Engine,” Energy Convers. Manag. 85, 354–360 (2014).

    Article  Google Scholar 

  16. J. Sidey, E. Mastorakos, and R. L. Gordon, “Simulations of Autoignition and Laminar Premixed Flames in Methane/Air Mixtures Diluted with Hot Products,” Combust. Sci. Technol. 186, 453–465 (2014).

    Article  Google Scholar 

  17. H. Gotoda, S. Kawaguchi, and Y. Saso, “Experiments on Dynamical Motion of Buoyancy-Induced Flame Instability under Different Oxygen Concentration in Ambient Gas,” Exp. Therm. Fluid Sci. 32, 1759–1765 (2008).

    Article  Google Scholar 

  18. S. Candel, “Combustion Dynamics and Control: Progress and Challenges,” Proc. Combust. Inst. 29, 1–28 (2002).

    Article  Google Scholar 

  19. C. Stone and S. Menon, “Swirl Control of Combustion Instabilities in a Gas Turbine Combustor,” Proc. Combust. Inst. 29, 155–160 (2002).

    Article  Google Scholar 

  20. Y. Y. Wu and K. D. Huang, Improving the Performance of a Small Spark-Ignition Engine by Using Oxygen-Enriched (SAE-2007-32-0004).

  21. Z. X. Cheng, J. A. Wehrmeyer, and R. W. Pitz, “Experimental and Numerical Studies of Opposed Jet Oxygen-Enhanced Methane Diffusion Flames,” Combust. Sci. Technol. 178, 2145–2163 (2006).

    Article  Google Scholar 

  22. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/gri mech/version30/text30.html.

    Google Scholar 

  23. J. S. Park, J. H. Dong, J. Park, J. S. Kim, and S. Kim, “Edge Flame Instability in Low-Strain-Rate Counterflow Diffusion Flames,” Combust. Flame 146, 612–619 (2006).

    Article  Google Scholar 

  24. H. K. Chellian, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, “An Experimental and Theoretical Investigation of the Dilution, Pressure and Flow-Field Effects on the Extinction Condition of Methane–Air–Nigtrogen Diffusion Flames,” Proc. Combust. Inst. 23, 503–511 (1991).

    Article  Google Scholar 

  25. L. G. Blevins and W. M. Pitts, “Modeling of Bare and Aspirated Thermocouples in Compartment Fires,” Fire Saf. J. 33, 39–59 (1999).

    Article  Google Scholar 

  26. A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, “OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames,” Report No. SAND-96-8243 (Sandia National Laboratory, 1997).

    Google Scholar 

  27. H. S. Xue, S. K. Aggarwal, R. J. Osborne, T. M. Brown, and R. W. Pitz, “Assessment of Reaction Mechanisms for Counterflow Methane–Air Partially Premixed Flames,” AIAA J. 40, 1236–1238 (2002).

    Article  ADS  Google Scholar 

  28. R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen, “Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames,” Combust. Flame 127, 2102–2118 (2001).

    Article  Google Scholar 

  29. C. J. Sung, C. K. Law, and J. Y. Chen, “Augmented Reduced Mechanisms for NO Emission in Methane Oxidation,” Combust. Flame 125, 906–919 (2011).

    Article  Google Scholar 

  30. M. Mikami, Y. Mizuta, Y. Tsuchida, and N. Kojima, “Flame Structure and Stabilization of Lean-Premixed Sprays in a Counterflow with Low-Volatility Fuel,” Proc. Combust. Inst. 32, 2223–2230 (2009).

    Article  Google Scholar 

  31. H. Watanabe et al., “Characteristics of Flamelets in Spray Flames in a Laminar Counterflow,” Combust. Flame 148, 234–248 (2007).

    Article  Google Scholar 

  32. C. H. Wang, G. J. Ueng, and M. S. Tsay, “An Experimental Determination of the Laminar Burning Velocities and Extinction Stretch Rates of Benzene/Air Flames,” Combust. Flame 113, 242–248 (1998).

    Article  Google Scholar 

  33. H. S. Xue and S. K. Aggarwal, “NOx Emissions in n-Heptane/Air Partially Premixed Flames,” Combust. Flame 132, 723–741 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Luo.

Additional information

Original Russian Text © J. Luo, L. Tian, L.-Sh. Liu, Z.-Zh. Cheng.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 5, pp. 13–23, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Tian, L., Liu, LS. et al. Study on flame structures and emissions of CO and NO in Various CH4/O2/N2–O2/N2 counterflow premixed flames. Combust Explos Shock Waves 53, 500–509 (2017). https://doi.org/10.1134/S0010508217050021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217050021

Keywords

Navigation