Skip to main content
Log in

Estimating the self-diffusion and mutual diffusion coefficients of binary mixtures on the basis of a modified van der Waals model

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The previously proposed model is used to determine the values of the self-diffusion coefficient of He, Ne, Ar, Kr, Xe, H2, D2, N2, O2, CO2, NH3, and CH4 in the liquid and dense gaseous states, which were compared with the experimental data obtained at a pressure of ≈200 MPa and a temperature of ≈500 K. The calculations are carried out with the use of the equation of state of these substances in the form of a modified van der Waals model. The self-diffusion model was generalized for the case of mutual diffusion in binary mixtures, which is based on the modified model of the van der Waals state equation for mixtures. The modeled coefficient of mutual diffusion for a great number of binary mixtures of the above-mentioned individual substances is determined, and the results are compared with the known data. Without special calibration for the experiment, the model correctly predicts the relationship of the self-diffusion and mutual diffusion coefficients (with their variation by several orders of magnitude in the case where the density changes from gaseous to liquid) with both pressure and temperature. For most substances considered in the paper, the maximum deviations of calculations from the experiment do not exceed 30–50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, et al., Molecular Theory of Gases and Liquids (Wiley, 1954).

    MATH  Google Scholar 

  2. R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids: Their Estimation and Correlation (McGraw-Hill, 1966).

    Google Scholar 

  3. A. B. Medvedev, “Transport Coefficients in the Van der Waals Modified Model,” Teplofiz. Vysok. Temp. 33 (2), 227–235 (1995).

    Google Scholar 

  4. A. B. Medvedev, “State Equation Model with Account for Evaporation, Ionization, and Melting,” Vopr. Atomn. Nauki Tekh., Ser. Teoret. Prikl. Fiz. 1, 12–19 (1992).

    Google Scholar 

  5. A. B. Medvedev, “Modification of the van der Waals Model for Dense States of Matter,” in High-Pressure Shock Compression of Solids VII. Shock Waves and Extreme States of Matter, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Springer-Veriag, New York, 2004).

    Google Scholar 

  6. A. B. Medvedev, “Equation of State and Transport Coefficients of Argon, Based on a Modified Van der Waals Model up to Pressures of 100 GPa,” Fiz. Goreniya Vzryva 46 (4), 116–126 (2010) [Combust., Expl., Shock Waves 46 (4), 472–481 (2010)].

    MathSciNet  Google Scholar 

  7. A. B. Medvedev and R. F. Trunin, “Shock Compression of Porous Metals and Silicates,” Usp. Fiz. Nauk 182 (8), 829–846 (2012).

    Article  Google Scholar 

  8. J. H. Dymond, “Corrected Enskog Theory and the Transport Coefficients of Liquids,” J. Chem. Phys. 60 (3), 969–973 (1974).

    Article  ADS  Google Scholar 

  9. H. Sigurgeeirsson and D. M. Heyes, “Transport Coefficients of Hard Sphere Fluids,” Molec. Phys. 101 (3), 469–482 (2003).

    Article  ADS  Google Scholar 

  10. R. J. Speedy, “Diffusion in Hard Sphere Fluid,” Molec. Phys. 62 (2), 509–515 (1987).

    Article  ADS  Google Scholar 

  11. J. J. Van Loef, “The Corrected Enskog Theory and the Transport Properties of Molecular Liquids,” Physica. A 87, 258–272 (1977).

    Article  ADS  Google Scholar 

  12. J. J. Van Loef, “The Corrected Enskog Theory Applied to the Transport Properties of Liquid Hydrogen and Deuterium,” Physica, B+C 90, 272–274 (1977).

    Article  ADS  Google Scholar 

  13. Z. N. Gerek and J. R. Elliott, “Self-Diffusivity Estimation by Molecular Dynamics,” Ind. Eng. Chem. Res. 49 (7), 3411–3423 (2010).

    Article  Google Scholar 

  14. D. Chandler, “Rough Hard Sphere Theory of the Self- Diffusion Constant for Molecular Liquids,” J. Chem. Phys. 62 (4), 1358–1362 (1975).

    Article  ADS  Google Scholar 

  15. T. Grob, J. Buchhauser, and H.-D. Ludemann, “Self- Diffusion in Fluid Carbon Dioxide at High Pressures,” J. Chem. Phys. 109 (11), 4518–4522 (1998).

    Article  ADS  Google Scholar 

  16. V. P.Kopyshev, A. B. Medvedev, and V. V. Khrustalev, “ Equation of State of Explosion Products on the Basis of a Modified Van der Waals Model,” Fiz. Goreniya Vzryva 42 (1), 87–99 (2006) [Combust., Expl., Shock Waves 42 (1), 76–87 (2006)].

    Google Scholar 

  17. V. P. Kopyshev, A. B. Medvedev, and A. V. Skobeev, “Calculation of Detonation Characteristics of Condensed Explosives with the use of a Modified van der Waals Model,” in 65 Years of VNIIEF, Physics and Equipment of High-Density Energies, Ed. by R. I. Il’kaev et al. (VNIIEF, Sarov, 2011).

    Google Scholar 

  18. S. H. Chen, H. T. Davis, and D. F. Evans, “Tracer Diffusion in Polyatomic Liquids. III,” J. Chem. Phys. 77 (5), 2540–2544 (1982).

    Article  ADS  Google Scholar 

  19. M. A.Matthews and A. Akgerman, “Hardsphere Theory for Correlation of Tracer Diffusion of Gases and Liquids in Alkanes,” J. Chem. Phys. 87 (4), 2285–2291 (1987).

    Article  ADS  Google Scholar 

  20. K. Rah and B. C. Eu, “The Generic van derWaals Equation of State and Self-Diffusion Coefficients of Liquids,” J. Chem. Phys. 115 (6), 7967–7976 (2001).

    Article  Google Scholar 

  21. K. Rah and B. C. Eu, “Generic van der Waals Equation of State and Theory of Diffusion Coefficients: Binary Mixtures of Simple Liquids,” J. Chem. Phys. 116 (18), 2634–2640 (2002).

    Article  Google Scholar 

  22. M. H. Cohen and D. Turnbull, “Molecular Transport in Liquids and Glasses,” J. Chem. Phys. 31 (5), 1164–1169 (1959).

    Article  ADS  Google Scholar 

  23. K. Rah and B. C. Eu, “Self-Diffusion Coefficient of Liquid Nitrogen,” Molec. Phys. 100 (20), 3281–3283 (2002).

    Article  ADS  Google Scholar 

  24. R. V. Telesnin, Molecular Physics (Lan’, St.-Petersburg, 2009) [in Russian].

    Google Scholar 

  25. M. N. Kogan, Rarefied Gas Dynamics (Springer, 1969).

    Book  Google Scholar 

  26. Thermophysical Properties of Fluid Systems, NIST Webbook, http://webbook.nist.gov/chemistry/fluid.

  27. J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, et al., “Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen,” J. Phys. Chem. Ref. Data 38 (3), 721–747 (2009).

    Article  ADS  Google Scholar 

  28. A. B. Medvedev, “State Equations of Liquid Hydrogen and Deuterium to 1 TPa and 20 000 K,” in Extreme States of Matter. Detonation. Shock Waves, IX Khariton’s Topical Scientific Readings, March 12–16, 2007, Ed. by A. L. Mikhailov (VNIIEF, Sarov, 2011).

    Google Scholar 

  29. R. F. Trunin, G. V. Boriskov, A. I. Bykov, et al., “Shock Compression of Liquid Nitrogen at a Pressure of 320 GPa,” Pis’ma Zh. Eksp. Teoret. Fiz. 88 (3), 220–223 (2008) [JETP Letters 88 (3), 189–191 (2008)].

    Google Scholar 

  30. D. E. O’Reilly and E. M. Peterson, “Self-Diffusion of Liquid Hydrogen and Deuterium,” J. Chem. Phys. 66 (3), 934–937 (1977).

    Article  ADS  Google Scholar 

  31. K. Krynicki, E. J. Rahkamaa, and J. G. Powles, “The Properties of Liquid Nitrogen I. Self-Diffusion Coefficient,” Molec. Phys. 28 (3), 853–855 (1974).

    Article  ADS  Google Scholar 

  32. J. Naghizadeh and S. A. Rice, “Kinetic Theory of Dense Fluids. X. Measurement and Interpretation of Self-Diffusion in Liquid Ar, Kr, Xe, and CH4,” J. Chem. Phys. 36 (10), 2710–2720 (1962).

    Article  ADS  Google Scholar 

  33. J. V. Gaven, J. S. Waugh, and W. H. Stockmayer, “Self-Diffusion and Impurity-Controlled Proton Relaxation in Liquid Methane,” J. Chem. Phys. 38 (2), 287–290 (1963).

    Article  ADS  Google Scholar 

  34. J. H. Rugheimer and P. S. Hubbard, “Nuclear Magnetic Relaxation and Diffusion in Liquid CH4, CF4, and Mixtures of CH4 and CF4 with Argon,” J. Chem. Phys. 39 (3), 552–564 (1963).

    Article  ADS  Google Scholar 

  35. J. W. Corbett and J. H, Wang, “Self-Diffusion in Liquid Argon,” J. Chem. Phys. 25 (3), 422–425 (1956).

    Article  ADS  Google Scholar 

  36. G. Cini-Castagnoli and F. P. Ricci, “Self-Diffusion in Liquid Argon,” J. Chem. Phys. 32 (1), 19–20 (1960).

    Article  ADS  Google Scholar 

  37. P. Zandveld, C. D. Andriesse, J. D. Bregman, et al., “Temperature Dependence of the Atomic Self-Motion in Liquid Argon,” Physica 50, 511–523 (1970).

    Article  ADS  Google Scholar 

  38. T. R. Mifflin and C. O. Bennett, “Self-Diffusion in Argon to 300 Atmospheres,” J. Chem. Phys. 29 (5), 975–978 (1958).

    Article  ADS  Google Scholar 

  39. L. Durbin and R. Kobayashi, “Diffusion of Krypton- 85 in Dense Gases,” J. Chem. Phys. 37 (8), 1643–1654 (1962).

    Article  ADS  Google Scholar 

  40. P. Carelli, A. De Santis, I. Modena, et al., “Self- Diffusion in Simple Dense Fluids,” Phys. Rev. A 13 (3), 1131–1139 (1976).

    Article  ADS  Google Scholar 

  41. P. Carelli, I. Modena, and F. P. Ricci, “Self-Diffusion in Krypton in Intermediate Density,” Phys. Rev. A 7 (1), 298–303 (1973).

    Article  ADS  Google Scholar 

  42. P. W. E. Peereboom, H. Luigjes, and K. O. Prins, “An NMR Spin-Echo Study of Self-Diffusion in Xenon,” Physica. A 156, 260–276 (1989).

    Article  ADS  Google Scholar 

  43. S. H. Chen, T. A. Postol, and K. Skold, “Study of Self- Diffusion in Dense Hydrogen Gas by Quasielastic Incoherent Neutron Scattering,” Phys. Rev. A 16 (5), 2112–2119 (1977).

    Article  ADS  Google Scholar 

  44. L. Chen, T. Grob, H. Krienke, et al., “T, p-Dependence of the Self-Diffusion and Spin-Lattice Relaxation in Fluid Hydrogen and Deuterium,” Phys. Chem. Chem. Phys. 3, 2025–2030 (2001).

    Article  Google Scholar 

  45. T. Grob, J. Buchhauser, W. E. Price, et al., “The p,T -Dependence of Self-Diffusion in Fluid Ammonia,” J. Molec. Liquids 73/74, 433–444 (1997).

    Article  Google Scholar 

  46. K. R. Harris and N. J. Trappeniers, “The Density Dependence of the Self-Diffusion Coefficient of Liquid Methane,” Physica. A 104, 262–280 (1980).

    Article  ADS  Google Scholar 

  47. A. Greiner-Schmid, S. Wappmann, M. Has, et al., “Self-Diffusion in the Compressed Fluid Lower Alkanes: Methane, Ethane, and Propane,” J. Chem. Phys. 94 (8), 5643–5649 (1991).

    Article  ADS  Google Scholar 

  48. E. Fukushima, A. A. V. Gibson, and T. A. Scott, “Carbon-13 NMR of Carbon Monoxide. II. Molecular Diffusion and Spin-Rotation Interaction in Liquid CO,” J. Chem. Phys. 71 (4), 1531–1536 (1979).

    Article  ADS  Google Scholar 

  49. G. Careri, J. Reuses, and J. M. Beenaccer, “The Diffusion Coefficient in Dilute H2–D2 and He3–He4 Liquid Mixtures,” Nuovo Cimento 13 (1), 148–153 (1959).

    Article  Google Scholar 

  50. G. Cini-Castagnoli, “Diffusion of Kr and He in Liquid Hydrogen,” J. Chem. Phys. 35 (6), 1999–2001 (1961).

    Article  ADS  Google Scholar 

  51. G. Cini-Castagnoli, A. Giardini-Cuidoni, and F. P. Ricci, “Diffusion of Neon, HT, and Deuterium in Liquid Hydrogen,” Phys. Rev. 123 (2), 404–406 (1961).

    Article  ADS  Google Scholar 

  52. G. Cini-Castagnoli, G. Pizzella, and F. P. Ricci, “The Diffusion of Argon and Tritium in Liquid Nitrogen,” Nuovo Cimento 10 (2), 303–309 (1958).

    Article  Google Scholar 

  53. G. Cini-Castagnoli and F. Dupre, “Diffusion Coefficient of 37A in Liquid N2,” Nuovo Cimento 13 (2), 464–465 (1959).

    Article  Google Scholar 

  54. P. J. Dunlop and C. M. Bignell, “Tracer Diffusion of Kr 85 in Liquid Ar, N2, and O2,” J. Chem. Phys. 108 (17), 7301–7304 (1998).

    Article  ADS  Google Scholar 

  55. G. Cini-Castagnoli and F. P. Ricci, “Diffusion of 37A, Kr, HT in Liquid Argon between (84–90) K,” Nuovo Cimento 15 (5), 795–805 (1960).

    Article  Google Scholar 

  56. D. Yu. Gamburg et al., Hydrogen. Properties, Production, Storage, Transportation, and Use (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  57. M. De Paz, F. Tantalo, and G. Varni, “Diffusion Measurements in Dense Gases. The Systems He–Ar and He–Ne,” J. Chem. Phys. 61 (10), 3875–3880 (1974).

    Article  ADS  Google Scholar 

  58. Z. Balenovic, M. N. Myers, and J. Calvin Giddings, “Binary Diffusion in Dense Gases to 1360 atm by the Chromatographic Peak-Broadening Method,” J. Chem. Phys. 52 (2), 915–922 (1970).

    Article  ADS  Google Scholar 

  59. T. R. Marrero and E. A. Mason, “Gaseous Diffusion Coefficients,” J. Phys. Chem. Ref. Data 1 (1), 3–118 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Medvedev.

Additional information

Original Russian Text © A.B. Medvedev.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 4, pp. 58–71, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, A.B. Estimating the self-diffusion and mutual diffusion coefficients of binary mixtures on the basis of a modified van der Waals model. Combust Explos Shock Waves 53, 420–432 (2017). https://doi.org/10.1134/S0010508217040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217040062

Keywords

Navigation