Skip to main content
Log in

Modeling the solid phase reaction distribution in the case of conjugate heat exchange

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the model of the propagation of solid phase exothermic reaction in a layer between inert materials with various thermal and physical properties. The model is implemented numerically. The relationships between the ignition time and the model parameters, as well as the behavior of some energy characteristics under various conditions in time (heat reserve in the heated layer and excess of enthalpy) are investigated. The influence of the thermal and physical properties of inert materials on the temperature distribution in the sample in stationary and nonstationary regimes is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Morsi, “The Diversity of Combustion Synthesis Processing: A Review,” J. Mater. Sci. 47, 68–92 (2012).

    Article  ADS  Google Scholar 

  2. A. Varma, A. S. Rogachev, A. S. Mukasyan, et al., “Combustion Synthesis of Advanced Materials: Principles and Applications,” Adv. Chem. Eng. 24, 79–226 (1998).

    Article  Google Scholar 

  3. G. Liu, J. Li, and K. Chen, “Combustion Synthesis of Refractory and Hard Materials: A Review,” Int. J. Refract. Metals Hard Mater. 39, 90–102 (2013).

    Article  Google Scholar 

  4. A. G. Merzhanov and I. P. Borovinskaya, “Historical Retrospective of SHS: An Autoreview,” Int. J. Self- Propag. High-Temper. Synth. 17 (4), 242–265 (2008).

    Article  Google Scholar 

  5. W. W. Wu, A. V. Gubarevich, H. Wada, et al., “NiO–Al Combustion Synthesis as Applied to Joining Al2O3 Ceramics,” Int. J. SHS 21 (2), 146–150 (2012).

    Google Scholar 

  6. T. Kimata, K. Uenishi, A. Ikenga, et al., “Dissimilar Joining of Nickel Aluminide with Spheroidal Graphite Cast Iron and Cu Alloy by Hot Pressing,” Sci. Technol. Adv. Mater. 5, 251–254 (2004).

    Article  Google Scholar 

  7. W. Zhu, F. Wu, B. Wang, et al., “Microstructural and Mechanical Integrity of Cu/Cu Interconnects Formed by Self-Propagating Exothermic Reaction Method,” Microelectron. Eng. 128, 24–30 (2014).

    Article  Google Scholar 

  8. A. E. Sychev, S. G. Vadchenko, O. K. Kamynina, et al., “Simultaneous Synthesis and Joining of a Ni–Al-Based Layer to a Mo Foil by SHS,” Int. J. SHS 18 (3), 213–216 (2009).

    Google Scholar 

  9. E. Colombini, R. Rosa, P. Peronesi, et al., “Microwave Ignited Combustion Synthesis As a Joining Technique for Dissimilar Materials: Modeling and Experimental Results,” Int. J. SHS 21 (1), 25–31 (2012).

    Google Scholar 

  10. Sh. Li et al., “Interdiffusion Involved in SHS Welding of SiC Ceramic to Itself and to Ni-based Superalloy,” Int. J. Refract. Metals Hard Mater. 18, 33–37 (2000).

    Article  Google Scholar 

  11. A. S. Mukasyan and J. D. E. White, “Combustion Joining of Refractory Materials,” Int. J. SHS 16 (3), 154–168 (2007).

    Google Scholar 

  12. Y.-Ch. Lin, P. J. McGinn, and A. S. Mukasyan, “High Temperature Rapid Reactive Joining of Dissimilar Materials: Silicon Carbide to Aluminium Alloy,” J. Eur. Ceram. Soc. 32, 3809–3818 (2012).

    Article  Google Scholar 

  13. J. D. E. White, A. H. Simpson, A. S. Steinberg, and A. S. Mukasyan, “Combustion Joining of Refractory Materials: Carbon–Carbon Composites,” J. Mater. Res. 23 (1), 160–169 (2008).

    Article  ADS  Google Scholar 

  14. A. G. Knyazeva and A. A. Chashchina, “Numerical Study of the Problem of Thermal Ignition in a Thick Walled Container,” Fiz. Goreniya Vzryva 40 (4), 67–73 (2004) [Combust., Expl., Shock Waves 40 (4), 432–437 (2004)].

    Google Scholar 

  15. A. G. Knyazeva and A. A. Chashchina, “Effect of Melting of an Inert Filler on the Inflammation of a Reaction Mixture in a Thick-Walled Vessel,” Gorenie Plazmokhim. 3 (4), 331–340 (2005).

    Google Scholar 

  16. A. A. Chashchina and A. G. Knyazeva, “Propagation Regimes of Solid-Phase Reaction in a Gap Between Two Inert Plates,” Fiz. Mezomekh. 7 (1), 82–85 (2004).

    Google Scholar 

  17. A. G. Knyazeva and A. A. Chashchina, “Bonding Modes of Materials Using Solid Phase Synthesis,” Khim. Interes. Ust. Razv. 13 (2), 343–350 (2005).

    Google Scholar 

  18. V. V. Belyaev and O. B. Kovalev, “Simulation of One Method of Laser Welding of Metal Plates Involving an SHS-Reacting Powder Mixture,” Int. J. Heat Mass Transf. 52, 173–180 (2009).

    Article  MATH  Google Scholar 

  19. A. A. Chashchina, “Voltages in the Reaction Zone in the Process of Joining Materials Using Solid Phase Synthesis,” Izv. Tomsk. Politekh. Univ. 309 (5), 107–113 (2006).

    Google Scholar 

  20. A. G. Knyazeva, “Mechanical Processes Modeling in the Ignition and Combustion of Sold Energetic Materials,” in Novel Energetic Materials and Applications, Proc. of the Ninth Int. Workshop on Combust. and Propuls., Lerici, Italy, Sept. 14–18, 2003.

    Google Scholar 

  21. A. G. Knyazeva and A. A. Chashchinam, “Thermomechanical Stability of Solid Phase Transformation Front in a Gap Between Two Inert Plates,” in Fundamental and Applied Problems in Mechanics: Proc. of Int. Scientific Conf., Khabarovsk, October 8–11, 2003.

    Google Scholar 

  22. A. G. Knyazeva, “Solid-Phase Combustion in a Plane Stress State. 1. Stationary Combustion Wave,” Prikl. Mekh. Tekh. Fiz. 51 (2), 27–38 (2010) [J. Appl. Mech. Tech. Phys. 51 (2), 164–173 (2010)].

    MathSciNet  MATH  Google Scholar 

  23. A. G. Knyazeva, “Solid-Phase Combustion in a Plane Stress State. 2. Stability to Small Perturbations,” Prikl. Mekh. Tekh. Fiz. 51 (3), 24–31 (2010) [J. Appl. Mech. Tech. Phys. 51 (3), 317–323 (2010)].

    MathSciNet  MATH  Google Scholar 

  24. A. G. Knyazeva, “Thermomechanical Stability of Solid Phase Transformation Front to Two-Dimensional Perturbations,” Vesnt. Perm. Gos. Tekh. Univ. Mekhanika, No. 4, 88–123 (2011).

    Google Scholar 

  25. V. G. Prokof’ev and V. K. Smolyakov, “Gasless Combustion in Two-Layer Structures: A Theoretical Model,” Int. J. SHS 22 (1), 5–10 (2013).

    Google Scholar 

  26. K. A. Aligozhina and A. G. Knyazeva, “Study of the Stability of Ignition in the Bonding of Dissimilar Materials with the Use of Synthesis in Solid Phase,” in Hierarchically Organized Systems of Animate and Inanimate Nature: Proc. of the Int. Conf., Tomsk, Sept. 9–13, 2013 (Inst. of Strength Phys. and Mat. Sci., Tomsk, 2013).

  27. V. N. Vilyunov, Theory of Ignition of Condensed Matter (Novosibirsk, Nauka, 1984) [in Russian].

  28. A. G. Knyazeva and K. A. Aligozhina, “Modeling of the Heat and Kinetic Phenomena Accompanying the Different Material Joining Using Solid-Phase Synthesis,” Adv. Mater. Res. 1040, 519–524 (2014).

    Article  Google Scholar 

  29. S. I. Baklan, V. N. Vilyunov, and I. G. Dik, “Contribution to the Problem of Stability Criteria for the Ignition of a Condensed Medium,” Fiz. Goreniya Vzryva 25 (1), 12–16 (1989) [Combust., Expl., Shock Waves 25 (1), 10–13 (1989)].

    Google Scholar 

  30. A. G. Knyazeva and V. E. Zarko, “Numerical Simulation of Transients in the Ignition of Two-Component Propellants by Intense Heat Fluxes,” Fiz. Goreniya Vzryva 29 (3), 16–20 (1993) [Combust., Expl., ShockWaves 29 (3), 266–269 (1993)].

    Google Scholar 

  31. K. A. Aligozhina and A. G. Knyazeva, “Numerical Study of Thermal and Physical Processes Accompanying the Solid Phase Synthesis of Layer Composites,” in Book of Abstracts of XXXI Siberian Thermal and Physical Seminar, Novosibirsk, November 17–19, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Aligozhina.

Additional information

Original Russian Text © K.A. Aligozhina, A.G. Knyazeva.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 4, pp. 48–57, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aligozhina, K.A., Knyazeva, A.G. Modeling the solid phase reaction distribution in the case of conjugate heat exchange. Combust Explos Shock Waves 53, 411–419 (2017). https://doi.org/10.1134/S0010508217040050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217040050

Keywords

Navigation