Skip to main content
Log in

Numerical and experimental study of ignition of a two-phase fuel composition (ethanol + air) in a resonance gas-dynamic system

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A mathematical model, laboratory setup description, and results of a numericalexperimental study of specific features of an unsteady two-phase flow of the ethanol–air mixture in the duct of a resonance gas-dynamic system (RGS) are presented. The basic specific features of ignition of the fuel mixture in the resonance cavity are detected. The conditions of ignition are determined, and the ignition delay time of the fuel composition in the RGS is estimated. The data obtained in this study can be used for modeling physical and chemical processes and for choosing liquid fuel injection modes satisfying the conditions of ignition of two-phase fuel mixtures in the RGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Voronetskii, A. R. Polyanskii, and K. Yu. Aref’ev, “Numerical Analysis of Nonconservative Acoustic Systems as Applied to Devices for Initiation of the Working Process in High-Enthalpy Flow Generators,” Nauka Obraz., http://www.technomag.edu.ru/doc/339499.html, 77-30569/339499, verified 01.29.2016.

  2. M. V. Dobrovol’skii, “Liquid-Fuel Rocket Engines,” Ed. by D. A. Yagodnikov (Izd. Mosk. Gos. Tekh. Univ. Baumana, Moscow, 2005) [in Russian].

  3. V. A. Skibin, Yu. I. Pavlov, V. G. Popov, et al., “Methods of Measurement and Processing of Physical Parameters in Tests of Aviation Engines and Power Generation Systems,” Ed. by V. A. Skibin (Izd. MATI-RGTU Tsiolkovskogo, Moscow, 2007) [in Russian].

  4. H. S. Sprenger, “Uber Thermische Effekte bei Rezonanzrobrem,” Mitteilungen aus dem Institut für Aerodynamik 6, 18–35 (1954).

    Google Scholar 

  5. P. A. Thompson, “Resonance Tubes,” Ph. D. Thesis (Inst. of Technology, Massachusetts, 1960).

  6. V. M. Kuptsov and V. V. Semenov, “Gas-Dynamic Heater with a Diffuser,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 4, 44–47 (1989).

    Google Scholar 

  7. K. Yu. Aref’ev, A. V. Voronetskii, and M. A. Il’chenko, “Dynamic Characteristics of a Resonant Gas-Dynamic System for Ignition of a Fuel Mixture,” Fiz. Goreniya Vzryva 49 (6), 41–46 (2013) [Combust., Expl., Shock Waves 49 (6), 657–661 (2013)].

    Google Scholar 

  8. A. N. Antonov, V. M. Kuptsov, and V. V. Komarov, Pressure Oscillations in Jets and Separated Flows (Mashinostroenie, Moscow, 1990) [in Russian].

    Google Scholar 

  9. A. V. Voronetskii, K. Yu. Aref’ev, and V. S. Zakharov, “Numerical and Theoretical Study of the Resonance System of Gas-Dynamic Ignition of a Liquid-Propellant Thruster,” Vestn. MGTU Baumana, Ser. Mashinostroenie, No. 1, 31–41 (2012).

    Google Scholar 

  10. K. Yu. Aref’ev, A. V. Voronetskii, and S. A. Suchkov, “Numerical Study of Specific Features of Droplet Fragmentation and Vaporization in Gas-Dynamic Flows with Cyclic Shock Waves,” Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 10, 17–30 (2015).

    Google Scholar 

  11. K. Yu. Arefyev and A. V. Voronetsky, “Modelling of the Process of Fragmentation and Vaporization of Non-Reacting Liquid Droplets in High-Enthalpy Gas Flows,” Teplofiz. Aeromekh. 22 (5), 609–620 (2015) [Thermophys. Aeromech. 22 (5), 585–596 (2015)].

    Google Scholar 

  12. V. M. Boiko, A. N. Papyrin, and S. V. Poplavski, “Dynamics of Droplet Breakup in Shock Waves,” Prikl. Mekh. Tekh. Fiz. 28 (2), 108–115 (1987) [J. Appl. Mech. Tech. Phys. 28 (2), 263–269 (1987)].

    Google Scholar 

  13. V. M. Boiko, A. N. Papyrin, and S. V. Poplavski, “Experimental Study of Two Types of Stripping Breakup of the Drop in the Flow behind the Shock Wave,” Fiz. Goreniya Vzryva 48 (4), 76–82 (2012) [Combust., Expl., Shock Waves 48 (4), 440–445 (2012)].

    Google Scholar 

  14. B. Abramzo and W. A. Sirignano, “Droplet Vaporization Model for Spray Combustion Calculations,” Int. J. Heat Mass Transfer 32, 1605–1618 (1989).

    Article  Google Scholar 

  15. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  16. C. J. Jachimowski, “Reduced Mechanism of Combustion of Hydrocarbon Fuels,” Aerokosm. Tekh., No. 6, 148–156 (1986).

    Google Scholar 

  17. N. Marinov, “A Detailed Chemical Kinetic Model for Ethanol Oxidation,” Preprint No. UCRL-JC-127-246 (Western States Section/Combustion Institute Spring Meeting, Livermore, 1997).

    Book  Google Scholar 

  18. B. F. Boyarshinov, E. P. Volchkov, and V. E. Terekhov, “Structure of a Boundary Layer with Injection and Combustion of Ethanol,” Fiz. Goreniya Vzryva 28 (3), 29–36 (1992) [Combust., Expl., Shock Waves 28 (3), 235–241 (1992)].

    Google Scholar 

  19. V. P. Karpov, G. G. Politenkova, and E. S. Severin, “Turbulent Combustion of Alcohols,” Fiz. Goreniya Vzryva 22 (4), 12–14 (1986) [Combust., Expl., Shock Waves 22 (4), 397–398 (1986)].

    Google Scholar 

  20. G. Black, H. J. Curran, S. Pichon, J. M. Simmie, and V. Zhukov, “Bio-Butanol: Combustion Properties and Detailed Chemical Kinetic Model,” Combust. Flame 157, 363–373 (2010).

    Article  Google Scholar 

  21. B. R. Moser, A. Williams, M. J. Haas, and R. L. McCormick, “Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel,” Fuel Proces. Technol. 90, 1122–1128 (2009).

    Article  Google Scholar 

  22. A. V. Voronetskii, D. V. Makarov, A. P. Skibin, L. A. Filimonov, and V. P. Yugov, “Calculation of Combustion Processes in a Small-Size Combustion Chamber,” Mat. Model. 11 (4), 29–36 (1999).

    Google Scholar 

  23. N. A. Vatolin, G. K. Moiseev, and B. G. Trusov, Thermodynamic Modeling in High-Temperature Inorganic Systems (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  24. B. G. Trusov, “TERRA Software System for Modeling Phase and Chemical Equilibrium at High Temperatures,” in Combustion and Plasmochemistry, Proc. III Int. Symp., August 24–26, 2005, Alma-Ata, Kazakhstan, 2005, pp. 52–57.

    Google Scholar 

  25. A. Levebvre, Gas Turbine Combustion (Hemisphere, Washington, 1983).

    Google Scholar 

  26. V. G. Dulov and V. P. Maksimov, “Thermoacoustics of Semi-Closed Volumes,” Preprint No. 2886 (Inst. Theor. Appl. Mech., Sib. Branch, Acad. of Sci. of the USSR, Novosibirsk, 1986).

    Google Scholar 

  27. V. M. Ustinov, “Experimental Study of Pressure Oscillations in a Resonance Tube,” in Applied Problems of Hydro- and Gas-Dynamics (Collected Scientific Papers of Higher Education Institutes) (Moscow, 1986), pp. 52–60.

    Google Scholar 

  28. V. N. Glaznev and Yu. G. Korobeinikov, “Hartmann Effect. Region of Existence and Oscillation Frequency,” Prikl. Mekh. Tekh. Fiz. 42 (4), 62–67 (2001) [J. Appl. Mech. Tech. Phys. 42 (4), 616–620 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Aref’ev.

Additional information

Original Russian Text © K.Yu. Aref’ev, A.V. Voronetskii, M.A. Il’chenko, S.A. Suchkov.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 4, pp. 34–42, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’ev, K.Y., Voronetskii, A.V., Il’chenko, M.A. et al. Numerical and experimental study of ignition of a two-phase fuel composition (ethanol + air) in a resonance gas-dynamic system. Combust Explos Shock Waves 53, 398–405 (2017). https://doi.org/10.1134/S0010508217040037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217040037

Keywords

Navigation