Skip to main content
Log in

Shock compression of vanadium hydrides and deuterides with different concentrations of gas atoms

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of experimental studies of the shock compression of samples of vanadium deuterides and hydrides of the following compositions: VX0.51, VX0.7–0.9, and VX≥1.6, where X is H or D. The experiments were carried out in the pressure range 20–140 GPa. The technology of synthesizing samples using electrolytic vanadium of not less than 99.7% purity. The Hugoniots of vanadium deuterides and hydrides were determined using the well-known reflection method. The samples were compressed using shock-wave generators based on the use of explosive charges of different power. The obtained experimental data are described by an equation of state developed using a model in which the specific heats and Gr¨uneisen ratios of ions and electrons are functions of density and temperature. At low temperature, the specific heat changes in accordance with the Debye theory. The removal of the degeneracy of the electron gas at higher temperatures is considered. The influence of ionization processes on the thermodynamic functions is effectively taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fukizawa, Y. Fukai, and K. Watanabe, “Effects of High Pressure on the Structure of VH0.5 and NbH0.75,” J. Phys. Soc. Jpn. 52, 2102–2107 (1983).

    Article  ADS  Google Scholar 

  2. Ya. Syono, K. Kusaba, K. Fukuoka, Y. Fukai, and K. Watanabe, “Shock Compression of V2H and V2D to 135 GPa and Anomalous Decompression Behavior,” Phys. Rev. B 29, 6520–6524 (1984).

    Article  ADS  Google Scholar 

  3. Y. Syono, H. Taguchi, Y. Fukai, T. Atou, K. Kusaba, and K. Fukuoka, “Shock Compression of VH0.50, NbH0.75 and TaH0.50: A Comparative Study,” AIP Conf. Proc. 309, 861–864 (1994).

    Article  ADS  Google Scholar 

  4. R. F. Trunin, M. V. Zhernokletov, N. F. Kuznetsov, and Yu. N. Sutulov, “Shock Compression of Metal Hydrides,” Izv. Akad. Nauk USSR, Ser. Fiz. Zemli, No. 11, 65–72 (1987).

    Google Scholar 

  5. V. N. Larin, Hypothesis of the Initially Hydride Earth (Nedra, Moscow, 1980), pp. 35–41 [in Russian].

    Google Scholar 

  6. A. N. Golubkov, A. A. Yukhimchuk, “Synthesis of the Dihydride Phase of Vanadium,” J. Alloys Compounds 404–406, 35–37 (2005).

    Article  Google Scholar 

  7. V. K. Gryaznov, M. V. Zhernokletov, I. L. Iosilevskii, G. V. Simakov, R. F. Trunin, L. I. Trusov, and V. E. Fortov, “Shock-Wave Compression of Strongly Nonideal Metal Plasma and Its Thermodynamics,” Zh. Eksp. Teor. Fiz. 114 (4(10)), 1242–1265 (1998).

    Google Scholar 

  8. H. Asano and M. Hirabayashi, “Low-Temperature Phase Transition near V3H2,” Phys. Status Solidi, A 16, 69–72 (1973).

    Article  ADS  Google Scholar 

  9. A. J. Maeland, T. R. P. Gibb, Jr., and D. P. Schumacher, “A Novel Hydride of Vanadium,” J. Amer. Chem. Soc. 83, 3728–3729 (1961).

    Article  Google Scholar 

  10. A. J. Maeland, “Investigation of the Vanadium–Hydrogen System by X-ray Diffraction Techniques,” J. Phys. Chem. 68 (8), 2197–2200 (1964).

    Article  Google Scholar 

  11. J. J. Reilly and R. H. Wiswall, “The Higher Vanadium Hydrides and Niobium,” Inorg. Chem. 9 (7), 1678–1682 (1970).

    Article  Google Scholar 

  12. H. Asano and M. Hirabayashi, “Interstitial Superstructures of Vanadium Deuterides,” Phys. Status Solidi, A 15, 267–279 (1973).

    Article  ADS  Google Scholar 

  13. I. N. Goncharenko, V. P. Glazkov, A. V. Irodova, O. A. Lavrova, and V. A. Somenkov, “Compressibility of Dihydrides of Transition Metals,” J. Alloys Compounds 179, 253–257 (1992).

    Article  Google Scholar 

  14. L. N. Padurets, A. A. Chertkov, and V. I. Mikheev, “Synthesis and Some Properties of Vanadium and Niobium Hydrides,” Zh. Neorg. Khim. 22 (6), 1717–1719 (1977).

    Google Scholar 

  15. K. I. Hardcastle and T. R. P. Gibb, Jr. “An X-ray Diffraction Investigation of the Vanadium–Deuterium System,” J. Phys. Chem. 76 (6), 927–930 (1979).

  16. K. Weymann and H. Muller, “Deuterides of Nb–Ta, Nb–V and Ta–V Solid Solutions,” J. Less-Common Metals 119, 127–139 (1986).

    Article  Google Scholar 

  17. D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin, “Equation of State Model for Metals with Ionization Effectively Taken into Account. Equation of State of Tantalum, Tungsten, Aluminum, and Beryllium,” Fiz. Goreniya Vzryva 49 (1), 106–120 (2013) [Combust., Expl., Shock Waves 49 (1), 82–104 (2013)].

    Google Scholar 

  18. A. A. Kayakin, L. F. Gudarenko, and D. D. Gordeev, “Equation of State of Compounds of Lithium Isotopes with Hydrogen Isotopes,” Fiz. Goreniya Vzryva 50 (5), 109–122 (2014) [Combust., Expl., Shock Waves 50 (5), 599–611 (2014)].

    Google Scholar 

  19. H. Asano, Y. Abe, and M. Hirabayashi, “A Calorimetric Study of the Phase Transformation of Vanadium Hydrides VH0.06–VH0.77,” Acta Metallurg. 9, 49–58 (1976).

    Google Scholar 

  20. H. Asano, M. Hirabayashi, “Low-Temperature Phase Transition near V3H2,” Phys. Stat. Sol. 16, 69–72 (1973).

    Article  ADS  Google Scholar 

  21. S. Yu. Savrasov and D. Yu. Savrasov, “Full-Potential Linear-Muffin-Tin-Orbital Method for Calculating Total Energies and Forces,” Phys. Rev. B 46 (19), 12181–12195 (1992).

    Article  ADS  Google Scholar 

  22. P. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved Tetrahedron Method for Brillouin-Zone Integrations,” Phys. Rev. B 49, 16223–16234 (1994).

    Article  ADS  Google Scholar 

  23. S. H. Vosko, L. Wilk, and M. Nusair, “Accurate Spin- Dependent Electron Liquid Correlation Energies for Local Spin Density Calculation: A Critical Analysis,” Can. J. Phys. 58 (8), 1200–1211 (1980).

    Article  ADS  Google Scholar 

  24. J. P. Perdew, K. Burke, and Y. Wang, “Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System,” Phys. Rev. B 54, 16533–16539 (1996).

    Article  ADS  Google Scholar 

  25. N. N. Kalitkin and L. V. Kuz’mina, “Tables of Thermodynamic Functions of Matter at High Energy Concentrations,” Preprint No. 35 (Inst. Appl. Mech., USSR Acad. of Sci., Moscow, 1975).

    Google Scholar 

  26. V. P. Kopyshev, “Thermodynamics of Monatomic Nuclei,” Preprint No. 59 (Inst. Appl. Mech., USSR Acad. of Sci., Moscow, 1978).

    Google Scholar 

  27. Y. Ding, R. Ahuja, J. Shu, P. Chow, W. Luo, and H. Mao, “Structural Phase Transition of Vanadium at 69 GPa,” Phys. Rev. Lett. 98, 085502 (2007).

    Article  ADS  Google Scholar 

  28. Y. Nakamoto, K. Takemura, M. Ishizuka, K. Shimizu, and T. Kikegawa, “Equation of State for Vanadium under Hydrostatic Conditions,” in Joint 20th AIRAPT–43th EHPRG, Karlsruhe, Germany, June 27–July 1, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Golubkov.

Additional information

Original Russian Text © A.N. Golubkov, L.F. Gudarenko, M.V. Zhernokletov, A.A. Kayakin, A.N. Shuikin.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 3, pp. 72–81, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, A.N., Gudarenko, L.F., Zhernokletov, M.V. et al. Shock compression of vanadium hydrides and deuterides with different concentrations of gas atoms. Combust Explos Shock Waves 53, 309–318 (2017). https://doi.org/10.1134/S001050821703008X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821703008X

Keywords

Navigation