Advertisement

Combustion, Explosion, and Shock Waves

, Volume 53, Issue 3, pp 309–318 | Cite as

Shock compression of vanadium hydrides and deuterides with different concentrations of gas atoms

  • A. N. GolubkovEmail author
  • L. F. Gudarenko
  • M. V. Zhernokletov
  • A. A. Kayakin
  • A. N. Shuikin
Article

Abstract

This paper presents the results of experimental studies of the shock compression of samples of vanadium deuterides and hydrides of the following compositions: VX0.51, VX0.7–0.9, and VX≥1.6, where X is H or D. The experiments were carried out in the pressure range 20–140 GPa. The technology of synthesizing samples using electrolytic vanadium of not less than 99.7% purity. The Hugoniots of vanadium deuterides and hydrides were determined using the well-known reflection method. The samples were compressed using shock-wave generators based on the use of explosive charges of different power. The obtained experimental data are described by an equation of state developed using a model in which the specific heats and Gr¨uneisen ratios of ions and electrons are functions of density and temperature. At low temperature, the specific heat changes in accordance with the Debye theory. The removal of the degeneracy of the electron gas at higher temperatures is considered. The influence of ionization processes on the thermodynamic functions is effectively taken into account.

Keywords

vanadium vanadium hydride vanadium deuteride equation of state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fukizawa, Y. Fukai, and K. Watanabe, “Effects of High Pressure on the Structure of VH0.5 and NbH0.75,” J. Phys. Soc. Jpn. 52, 2102–2107 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    Ya. Syono, K. Kusaba, K. Fukuoka, Y. Fukai, and K. Watanabe, “Shock Compression of V2H and V2D to 135 GPa and Anomalous Decompression Behavior,” Phys. Rev. B 29, 6520–6524 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Syono, H. Taguchi, Y. Fukai, T. Atou, K. Kusaba, and K. Fukuoka, “Shock Compression of VH0.50, NbH0.75 and TaH0.50: A Comparative Study,” AIP Conf. Proc. 309, 861–864 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    R. F. Trunin, M. V. Zhernokletov, N. F. Kuznetsov, and Yu. N. Sutulov, “Shock Compression of Metal Hydrides,” Izv. Akad. Nauk USSR, Ser. Fiz. Zemli, No. 11, 65–72 (1987).Google Scholar
  5. 5.
    V. N. Larin, Hypothesis of the Initially Hydride Earth (Nedra, Moscow, 1980), pp. 35–41 [in Russian].Google Scholar
  6. 6.
    A. N. Golubkov, A. A. Yukhimchuk, “Synthesis of the Dihydride Phase of Vanadium,” J. Alloys Compounds 404–406, 35–37 (2005).CrossRefGoogle Scholar
  7. 7.
    V. K. Gryaznov, M. V. Zhernokletov, I. L. Iosilevskii, G. V. Simakov, R. F. Trunin, L. I. Trusov, and V. E. Fortov, “Shock-Wave Compression of Strongly Nonideal Metal Plasma and Its Thermodynamics,” Zh. Eksp. Teor. Fiz. 114 (4(10)), 1242–1265 (1998).Google Scholar
  8. 8.
    H. Asano and M. Hirabayashi, “Low-Temperature Phase Transition near V3H2,” Phys. Status Solidi, A 16, 69–72 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    A. J. Maeland, T. R. P. Gibb, Jr., and D. P. Schumacher, “A Novel Hydride of Vanadium,” J. Amer. Chem. Soc. 83, 3728–3729 (1961).CrossRefGoogle Scholar
  10. 10.
    A. J. Maeland, “Investigation of the Vanadium–Hydrogen System by X-ray Diffraction Techniques,” J. Phys. Chem. 68 (8), 2197–2200 (1964).CrossRefGoogle Scholar
  11. 11.
    J. J. Reilly and R. H. Wiswall, “The Higher Vanadium Hydrides and Niobium,” Inorg. Chem. 9 (7), 1678–1682 (1970).CrossRefGoogle Scholar
  12. 12.
    H. Asano and M. Hirabayashi, “Interstitial Superstructures of Vanadium Deuterides,” Phys. Status Solidi, A 15, 267–279 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    I. N. Goncharenko, V. P. Glazkov, A. V. Irodova, O. A. Lavrova, and V. A. Somenkov, “Compressibility of Dihydrides of Transition Metals,” J. Alloys Compounds 179, 253–257 (1992).CrossRefGoogle Scholar
  14. 14.
    L. N. Padurets, A. A. Chertkov, and V. I. Mikheev, “Synthesis and Some Properties of Vanadium and Niobium Hydrides,” Zh. Neorg. Khim. 22 (6), 1717–1719 (1977).Google Scholar
  15. 15.
    K. I. Hardcastle and T. R. P. Gibb, Jr. “An X-ray Diffraction Investigation of the Vanadium–Deuterium System,” J. Phys. Chem. 76 (6), 927–930 (1979).Google Scholar
  16. 16.
    K. Weymann and H. Muller, “Deuterides of Nb–Ta, Nb–V and Ta–V Solid Solutions,” J. Less-Common Metals 119, 127–139 (1986).CrossRefGoogle Scholar
  17. 17.
    D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin, “Equation of State Model for Metals with Ionization Effectively Taken into Account. Equation of State of Tantalum, Tungsten, Aluminum, and Beryllium,” Fiz. Goreniya Vzryva 49 (1), 106–120 (2013) [Combust., Expl., Shock Waves 49 (1), 82–104 (2013)].Google Scholar
  18. 18.
    A. A. Kayakin, L. F. Gudarenko, and D. D. Gordeev, “Equation of State of Compounds of Lithium Isotopes with Hydrogen Isotopes,” Fiz. Goreniya Vzryva 50 (5), 109–122 (2014) [Combust., Expl., Shock Waves 50 (5), 599–611 (2014)].Google Scholar
  19. 19.
    H. Asano, Y. Abe, and M. Hirabayashi, “A Calorimetric Study of the Phase Transformation of Vanadium Hydrides VH0.06–VH0.77,” Acta Metallurg. 9, 49–58 (1976).Google Scholar
  20. 20.
    H. Asano, M. Hirabayashi, “Low-Temperature Phase Transition near V3H2,” Phys. Stat. Sol. 16, 69–72 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    S. Yu. Savrasov and D. Yu. Savrasov, “Full-Potential Linear-Muffin-Tin-Orbital Method for Calculating Total Energies and Forces,” Phys. Rev. B 46 (19), 12181–12195 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    P. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved Tetrahedron Method for Brillouin-Zone Integrations,” Phys. Rev. B 49, 16223–16234 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    S. H. Vosko, L. Wilk, and M. Nusair, “Accurate Spin- Dependent Electron Liquid Correlation Energies for Local Spin Density Calculation: A Critical Analysis,” Can. J. Phys. 58 (8), 1200–1211 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    J. P. Perdew, K. Burke, and Y. Wang, “Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System,” Phys. Rev. B 54, 16533–16539 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    N. N. Kalitkin and L. V. Kuz’mina, “Tables of Thermodynamic Functions of Matter at High Energy Concentrations,” Preprint No. 35 (Inst. Appl. Mech., USSR Acad. of Sci., Moscow, 1975).Google Scholar
  26. 26.
    V. P. Kopyshev, “Thermodynamics of Monatomic Nuclei,” Preprint No. 59 (Inst. Appl. Mech., USSR Acad. of Sci., Moscow, 1978).Google Scholar
  27. 27.
    Y. Ding, R. Ahuja, J. Shu, P. Chow, W. Luo, and H. Mao, “Structural Phase Transition of Vanadium at 69 GPa,” Phys. Rev. Lett. 98, 085502 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Nakamoto, K. Takemura, M. Ishizuka, K. Shimizu, and T. Kikegawa, “Equation of State for Vanadium under Hydrostatic Conditions,” in Joint 20th AIRAPT–43th EHPRG, Karlsruhe, Germany, June 27–July 1, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Golubkov
    • 1
    Email author
  • L. F. Gudarenko
    • 1
  • M. V. Zhernokletov
    • 1
  • A. A. Kayakin
    • 1
  • A. N. Shuikin
    • 1
  1. 1.Institute of Experimental Physics (VNIIEF)Russian Federal Nuclear CenterSarovRussia

Personalised recommendations