Combustion, Explosion, and Shock Waves

, Volume 53, Issue 3, pp 249–261 | Cite as

Numerical analysis of combustion of a hydrogen–air mixture in an advanced ramjet combustor model during activation of O2 molecules by resonant laser radiation

  • L. V. Bezgin
  • V. I. Kopchenov
  • A. M. StarikEmail author
  • N. S. Titova


This paper presents a numerical study of the combustion of a hydrogen–air mixture in a model ramjet combustor with separate hydrogen and air supply during activation of O2 molecules by resonant laser radiation at a wavelength of 762.3 nm and 193.3 nm. The calculation is made using the parabolized Navier–Stokes equations taking into account chemical reactions, laser irradiation, and the nonuniformity of air parameters at the combustor inlet due to the complex gas-dynamic structure of the flow in the air intake. It is shown that the combustion completeness at the combustor outlet can be increased by a factor of 2.8 by redistributing the hydrogen supply through the system of fuel tank pylons. Further increase in the combustion completeness can be obtained by exposure of a narrow flow region to resonant laser radiation, more effectively at a wavelength of 193.3 nm. The combination of laser exposure with hydrogen supply redistribution increases the combustion efficiency by a factor of more than 4.7 compared to the base case. In this case, this provides a 95% increase the longitudinal force component in the portion of the internal engine duct that provides a positive contribution to the thrust. Estimation of the energy efficiency of using laser radiation shows that the laser energy input required to achieve this effect is 40–80 times (depending on the fuel supply method) less than the increase in the chemical energy (compared to the case of no laser exposure) released due to fuel combustion.


ramjet engine combustor hydrogen combustion combustion efficiency resonant laser radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Pergamon Press, Oxford, 1958).Google Scholar
  2. 2.
    V. Ya. Basevich and A. A. Belyaev, “Calculation of the Increase in Oxyhydrogen Flame Velocity with the Addition of Singlet Oxygen,” Khim. Fiz. 8 (8), 1124–1127 (1989).Google Scholar
  3. 3.
    A. M. Starik and N. G. Dautov, “On a Possibility of Promotion of Combustion for H2 + O2 Mixture by Excitation of Molecular Vibrational Degrees of Freedom,” Dokl. Akad. Nauk 336 (5), 617–622 (1994).Google Scholar
  4. 4.
    A. M. Starik and N. S. Titova, “On a Possibility to Reduce the Ignition Threshold for Combustible Mixtures by Selective Excitation of Molecular Vibrations in Initial Reagents,” Dokl. Akad. Nauk 370, 38–42 (2000).zbMATHGoogle Scholar
  5. 5.
    A. M. Starik and N. S. Titova, “Kinetic Mechanisms for the Initiation of Supersonic Combustion of a Hydrogen–Air Mixture behind a Shock Wave under the Excitation of Molecular Vibrations in Initial Reagent,” Zh. Tekh. Fiz. 71 (8), 1–12 (2001).Google Scholar
  6. 6.
    A. M. Starik and N. S. Titova, “Low-Temperature Initiation of the Detonation Combustion of Gas Mixtures in a Supersonic Flow with Excitation of Molecular Oxygen to the State O2(a1?g),” Dokl. Akad. Nauk 380 (3), 332–337 (2001).Google Scholar
  7. 7.
    V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, D. N. Kozlov, A. M. Starik, and N. S. Titova, “On the Influence of Electronically Excited Oxygen Molecules on Combustion of Hydrogen–Oxygen Mixture,” J. Phys. D: Appl. Phys. 41, 192001 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    T. Ombrello, S. H. Won, Y. Ju, and S. Williams, “Flame Propagation Enhancement by Plasma Excitation of Oxygen. Part II: Effects of O2(a1?g),” Combust. Flame 157, 1916–1928 (2010).CrossRefGoogle Scholar
  9. 9.
    Nonequilibrium Physicochemical Processes in Gas Flows and New Principles of Combustion Organization, Ed. by A. M. Starik (Torus Press, Moscow, 2011) [in Russian].Google Scholar
  10. 10.
    S. M. Starikovskaya, “Plasma Assisted Ignition and Combustion,” J. Phys. D: Appl. Phys. 39, 265–299 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. Starikovskiy and N. Aleksandrov, “Plasma-Assisted Ignition and Combustion,” Prog. Energy Combust. Sci. 39, 61–110 (2013).CrossRefGoogle Scholar
  12. 12.
    B. E. Forch and A. W. Miziolek, “Laser-Based Ignition of H2/O2 and D2/O2 Premixed Gases Through Resonant Multiphoton Excitation of H and D Atoms near 243 nm,” Combust. Flame 85, 254–262 (1991).CrossRefGoogle Scholar
  13. 13.
    D. Lucas, D. Dunn-Rankin, K. Hom, and N. J. Brown, “Ignition of Excimer Laser Photolysis of Ozone,” Combust. Flame 69 (2) 171–184 (1987).CrossRefGoogle Scholar
  14. 14.
    M. Lavid, Y. Nachshon, S. K. Gulati, and J. G. Stevens, “Photochemical Ignition of Premixed Hydrogen/ Oxygen Mixtures with ArF Laser,” Combust. Sci. Tehnol. 96 (4-6), 231–245 (1994).CrossRefGoogle Scholar
  15. 15.
    P. D. Ronney, “Laser Versus Conventional Ignition of Flames,” Opt. Eng. 33 (2), 510–521 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Starik and N. S. Titova, “Kinetic Mechanisms of Combustion Initiation of Hydrogen–Oxygen Mixtures during Excitation of the Electronic Degrees of Freedom of Molecular Oxygen by Laser Radiation,” Zh. Tekh. Fiz. 73 (3), 59–68 (2003).Google Scholar
  17. 17.
    A. M. Starik, N. S. Titova, and B. I. Lukhovitskii, “Kinetics of Low Temperature Combustion Initiation Mixtures H2 + O2 + H2O upon Excitation of Molecular Vibrations H2O Laser Radiation,” Zh. Tekh. Fiz. 74 (1), 77–83 (2004).Google Scholar
  18. 18.
    B. I. Lukhovitskii, A. M. Starik, and N. S. Titova, “Activation of Chain Processes in Combustible Mixtures by Laser Excitation of Molecular Vibrations of Reactants,” Fig. Goreniya Vzryva 41 (4), 29–38 (2005) [Combust., Expl., Shock Waves 41 (4), 386–394 (2005)].Google Scholar
  19. 19.
    A. M. Starik, P. S. Kuleshov, and N. S. Titova, “Comprehensive Analysis of Combustion Initiation in Methane–Air Mixture by Resonance Laser Radiation,” J. Phys. D.: Appl. Phys. 4-2, 175503 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The Promotion of Ignition in a Supersonic H2–Air Mixing Layer by Laser-Induced Excitation of O2 Molecules: Numerical Study,” Combust. Flame 156, 1641–1652 (2009).CrossRefGoogle Scholar
  21. 21.
    A. M. Starik and N. S. Titov, “Kinetics of Detonation Initiation in a Supersonic Flow of H2 + O2 (Air) during Excitation of O2 Molecules by Resonant Laser Radiation,” Kinet. Katal. 44 (1), 35–46 (2003).CrossRefGoogle Scholar
  22. 22.
    G. C. Light, “The Effect of Vibrational Excitation on the Reaction of O(3P) with H2 and the Distribution of Vibrational Energy in the Product OH,” J. Chem. Phys. 68 (6), 2831–2843 (1978).ADSCrossRefGoogle Scholar
  23. 23.
    A. Lifshitz and H. Teitelbaum, “The Unusual Effect of Reactant Vibrational Excitation on the Rates of Endothermic and Exothermic Elementary Combustion Reactions,” Chem. Phys. 219 (2-3), 243–256 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    N. Balakrishnan, “On the Role of Vibrationally Excited H2 as a Source of OH in the Mesosphere,” Geophys. Res. Lett. 31 (4), L04106 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    L. T. Cupitt, G. Takacs, and G. P. Glass, “Reaction of Hydrogen Atoms and O2(1?g),” Int. J. Chem. Kinet. 14, 487–497 (1982).CrossRefGoogle Scholar
  26. 26.
    V. Y. Basevich and B. I. Vedeneev, “The Rate Constant of H + O2(1?) = OH + O Reaction,” Chem. Phys. Rep. 4, 1102–1106 (1985).Google Scholar
  27. 27.
    A. Sharipov and A. Starik, “Theoretical Study of the Reaction of Carbon Monoxide with Oxygen Molecules in the Ground Triplet and Singlet Delta States,” J. Phys. Chem. A 115, 1795–1803 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Starik and A. Sharipov, “Theoretical Analysis of Reaction Kinetics with Singlet Oxygen Molecules,” Phys. Chem. Chem. Phys. 13, 16424–16436 (2011).CrossRefGoogle Scholar
  29. 29.
    A. S. Sharipov and A. M. Starik, “Theoretical Study of the Reaction of Ethane with Oxygen Molecules in the Ground Triplet and Singlet Delta States,” J. Phys. Chem. A 116, 8444–8454 (2012).CrossRefGoogle Scholar
  30. 30.
    A. M. Starik, B. I. Loukhovitski, A. S. Sharipov, and N. S. Titova, “Physics and Chemistry of the Influence of Excited Molecules on Combustion Enhancement,” Phil. Trans.: Math., Phys. Eng. Sci. (Ser. A) 373 (2048), 20140341 (2015).CrossRefGoogle Scholar
  31. 31.
    W. C. Eisenberg, A. Shelson, R. Butler, et al., “Gas Phase Generation of O2(a1?g) at Atmospheric Pressure by Direct Laser Excitation,” J. Photochem. 25 (2-4), 439–448 (1984).CrossRefGoogle Scholar
  32. 32.
    D. A. Pejakovic, E. R. Wouters, K. E. Philips, et al., “Collisional Removal of O2(b1S+ g= 1) by O2 at Thermospheric Temperatures,” J. Geophys. Res. 110, A03308 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    C. Amiot and J. Verges, “The Magnetic Dipole a1X3Sg—Transition in the Oxygen Afterglow,” Can. J. Phys. 59 (10), 1391–1398 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    A. M. Starik and and O. V. Taranov, “The Kinetics of Processes in the Middle Atmosphere during Excitation of O2 Molecular by Laser Radiation,” Zh. Tekh. Fiz. 68 (8), 15–23 (1998).Google Scholar
  35. 35.
    M. J. McEwen and L. F. Phillips, Chemistry of the Atmosphere (New York, Halsted Press, 1975).Google Scholar
  36. 36.
    R. Rodrigo et al., “Neutral Atmospheric Composition between 60 and 220 km: A Theoretical Model for Mid-Latitudes,” Planet Space Sci. 34 (8), 723–743 (1986).ADSCrossRefGoogle Scholar
  37. 37.
    Turbulent Reacting Flows, Ed. by P. A. Libby and F. A. Williams (Springer-Verlag, Heidelberg–Berlin–New York, 1980).Google Scholar
  38. 38.
    V. E. Kozlov, A. N. Sekundov, and I. P. Smirnova, “Turbulence Models for Describing Flow in a Compressed Gas Jet,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 38–44 (1986).Google Scholar
  39. 39.
    D. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Hemisphere, Washington, 1984).zbMATHGoogle Scholar
  40. 40.
    L. Bezgin, A. Ganzhelo, O. Gouskov, and V. Kopchenov, “Some Numerical Investigation Results of Shock- Induced Combustion,” AIAA Paper No. 1998-1513 (1998).CrossRefGoogle Scholar
  41. 41.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multi-Dimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  42. 42.
    A. M. Starik, B. I. Loukhovitski, A. S. Sharipov, and N. S. Titova, “Intensification of Shock-Induced Combustion by Electric-Discharge-Excited Oxygen Molecules: Numerical Study,” Combust. Theory Model. 14 (5), 653–679 (2010).ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    A. M. Starik, L. V. Bezgin, V. I. Kopchenov, B. I. Loukhovitski, A. S. Sharipov, and N. S. Titova, “Numerical Study of the Enhancement of Combustion Performance in a Scramjet Combustor Due to Injection of Electric-Discharge-Activated Oxygen Molecules,” Plasma Sources Sci. Technol. 22 (6), 065007 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    L. V. Bezgin, V. I. Kopchenov, A. S. Sharipov, N. S. Titova, and A. M. Starik, “Evaluation of Prediction Ability of Detailed Reaction Mechanisms in the Combustion Performance in Hydrogen/Air Supersonic Flows,” Combust. Sci. Technol. 185 (1), 62–94 (2013).CrossRefGoogle Scholar
  45. 45.
    J. V. Michael, J. W. Sutherland, L. B. Harding, and A. F. Wagner, “Initiation in H2/O2: Rate Constants for H2 + O2H + HO2 at High Temperature,” Proc. Combust. Inst. 28, 1471–1478 (2000).CrossRefGoogle Scholar
  46. 46.
    D. A. Masten, R. K. Hanson, and C. T. Bowman, “Shock Tube Study of the Reaction H + O2 OH + O Using OH Laser Absorption,” J. Phys. Chem. 94, 7119–7128 (1990).CrossRefGoogle Scholar
  47. 47.
    J. T. Herbon, R. K. Hanson, D. M. Golden, and C. T. Bowman, “A Shock Tube Study of the Enthalpy of Formation of OH,” Proc. Combust. Inst. 29, 1201–1208 (2002).CrossRefGoogle Scholar
  48. 48.
    A. D. Snyder, J. Robertson, D. L. Zanders, and G. B. Skinner, “Shock Tube Studies of Fuel–Air Ignition Characteristics,” Report No. AFAPL-TR-65-93 (1965).Google Scholar
  49. 49.
    M. Slack and A. Grillo, “Investigation of hydrogen–air Ignition Sensitized by Nitric Oxide and Nitrogen Dioxide,” NASA Report No. CR-2896 (1977).Google Scholar
  50. 50.
    E. Schultz and J. Shepherd, “Validation of Detailed Reaction Mechanisms for Detonation Simulation,” Report No. FM99-5 (California Inst. of Technology, 2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. V. Bezgin
    • 1
  • V. I. Kopchenov
    • 1
  • A. M. Starik
    • 1
    Email author
  • N. S. Titova
    • 1
  1. 1.Baranov Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations