Skip to main content
Log in

Effect of multiple scattering on the critical density of the energy used to initiate a PETN–aluminum compound by a neodymium laser pulse

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The radiative transfer equation and the Mie theory are used in this paper to determine the optical properties of PETN–aluminum nanoparticles compounds. In the case of laser initiation with a wavelength of 1064 nm, the illumination gain at a depth of 100 μm from the surface of the sample varies in the range of 1.070–3.308 for nanoparticles with radii of 20–200 nm. The minimum of the relationship between the density of the energy required to initiate an explosive decomposition and the mass fraction of nanoparticles can be determined by the maximum illumination gain in the sample. The relationships between the critical density of the energy required to initiate PETN–aluminum nanoparticles compounds by the pulses of the first and second harmonics of a neodymium laser and the nanoparticle radius with account for multiple light scattering are determined. It is shown that account for multiple light scattering improves the agreement between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “Laser-Excited Detonation of Condensed Explosives,” Fiz. Goreniya Vzryva 2 (3), 132–133 (1966) [Combust., Expl., Shock Waves 2 (3), 81–82 (1966)].

    Google Scholar 

  2. V. V. Aleksandrov, A. A. Davydenko, A. F. Eremin, et al., “Determination of the Kinetic Parameters by the Temperature Dependence of the Gasless Combustion Velocity,” Fiz. Goreniya Vzryva 20 (6), 104–109 (1984) [Combust., Expl., Shock Waves 20 (6), 665–669 (1984)].

    Google Scholar 

  3. R. S. Burkina, E. Yu. Morozova, and V. P. Tsipilev, “Initiation of a Reactive Material by a Radiation Beam Absorbed by Optical Heterogeneities of the Material,” Fiz. Goreniya Vzryva 47 (5), 95–105 (2011) [Combust., Expl., Shock Waves 47 (5), 581–590 (2011)].

    Google Scholar 

  4. I. G. Assovskii, Combustion Physics and Internal Ballistics (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  5. B. P. Aduev, G. M. Belokurov, D. R. Nurmukhametov, et al., “Photosensitive Material Based on PETN Mixtures with Aluminum Nanoparticles,” Fiz. Goreniya Vzryva 48 (3), 127–132 (2012) [Combust., Expl., Shock Waves 48 (3), 361–366 (2012)].

    Google Scholar 

  6. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, et al., “Controlling the Sensitivity of PETN to Laser Exposure with the Impurities of Nanoparticles of Nickel and Aluminum Metals,” Khim. Fiz. 33 (6), 37 (2014).

    Google Scholar 

  7. Y. Yang, Z. Sun, S. Wang, et al., “Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials,” J. Phys. Chem. B. 107 (19), 4485–4493 (2003).

    Article  Google Scholar 

  8. E. D. Aluker, N. L. Aluker, A. G. Krechetov, et al., “Laser Initiation of PETN in the Resonant Photoinitiation Regime,” Khim. Fiz. 30 (1), 48–55 (2011).

    Google Scholar 

  9. R. V. Tsyshevsky, O. Sharia, and M. M. Kuklja, “Energies of Electronic Transitions of Pentaerythritol Tetranitrate Molecules and Crystals,” J. Phys. Khim. 118 (18), 9324–9335 (2014).

    Google Scholar 

  10. R. V. Tsyshevsky, O. Sharia, and M. M. Kuklja, “Optical Absorption Energies of Molecular Defects in Pentaerythritol Tetranitrate Crystals: Quantum Chemical Modeling,” J. Phys. Chem. C. 118 (46), 26530–26542 (2014).

    Article  Google Scholar 

  11. A. V. Kalenskii, M. V. Anan’eva, A. A. Zvekov, et al., “The Kinetics of Explosive Decomposition of Tetranitropentaerytrite–Aluminum Tablets,” Zh. Tekh. Fiz. 85 (3), 119–123 (2015).

    Google Scholar 

  12. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, et al., “The Explosive Decomposition of PETN with Aluminum Nanoadditives under the Influence of Pulsed Laser Radiation of Different Wavelengths,” Khim. Fiz. 32 (8), 39–42 (2013).

    Google Scholar 

  13. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, et al., “Heat Transfer Processes in the Laser Heating of Inclusions in an Inert Matrix,” Teplofiz. Aeromekh. 20 (3), 375–382 (2013).

    Google Scholar 

  14. B. P. Aduev, M. V. Anan’eva, A. A. Zvekov, et al., “Micro-Hotspot Model for the Laser Initiation of Explosive Decomposition of Energetic Materials with Melting Taken into Account,” Fiz. Goreniya Vzryva 50 (6), 92–99 (2014) [Combust., Expl., Shock Waves 50 (6), 704–710 (2014)].

    Google Scholar 

  15. V. G. Kriger, A. V. Kalenskii, A. A. Zvekov, et al., “Effect of Laser Radiation Absorption Efficiency on the Heating Temperature of Inclusions in Transparent Media,” Fiz. Goreniya Vzryva 48 (6), 92–99 (2012) [Combust., Expl., Shock Waves 48 (6), 705–708 (2012)].

    Google Scholar 

  16. A. V. Kalenskii, A. A. Zvekov, M. V. Anan’eva, et al., “Influence of Laser Wavelength on the Critical Energy Density for Initiation of Energetic Materials,” Fiz. Goreniya Vzryva 50 (3), 98–104 (2014) [Combust., Expl., Shock Waves 50 (3), 705–708 (2014)].

    Google Scholar 

  17. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Stability of Composite Solid Propellant Ignition by a Local Source of Limited Energy Capacity,” Fiz. Goreniya Vzryva 50 (6), 54–60 (2014) [Combust., Expl., Shock Waves 50 (6), 670–675 (2014)].

    Google Scholar 

  18. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “Solid-Phase Ignition of Composite Propellant by a Hot Particle in the Case of Free-Convection Heat Sink into the Environment,” Khim. Fiz. 33 (4), 38–47 (2014).

    Google Scholar 

  19. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, “The Ignition of a Polymer Material by Single Hot Metal and Nonmetal Particles in the Case of Diffusive-Convective Heat and Mass Transfer in the Oxidant Medium,” Khim. Fiz. 33 (9), 26–33 (2014).

    Google Scholar 

  20. A. D. Zinchenko, A. I. Pogrebov, V. I. Tarzhanov, et al., “Optical Characteristics of Some Powdered High Explosives,” Fiz. Goreniya Vzryva 50 (6), 80–87 (1992) [Combust., Expl., Shock Waves 50 (6), 524–530 (1992)].

    Google Scholar 

  21. A. A. Karabutov, I. M. Pelivanov, and N. B. Podymova, “Direct Measurement of the Spatial Distribution of Light Intensity in a Scattering Medium,” Pis’ma Zh. Eksp. Teor. Fiz. 70 (3), 187–191 (1999) [JETP Letters 70 (3), 183–188 (1999)].

    Google Scholar 

  22. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., “The Study of the Optical Properties of Aluminum Nanoparticles in Tetranitropentaerytrite with the Use of an Integrating Sphere,” Zh. Tekh. Fiz. 84 (9), 126–131 (2014).

    Google Scholar 

  23. E. I. Aleksandrov and V. P. Tsipilev, “The Specific Features of a Light Regime in the Volume of a Semi-Infinite Layer of Dynamic Light Scattering with the Illumination of a Directed Beam of Finite Aperture,” Izv. Vyssh. Uchebn. Zaved., Fiz. 52 (10), 23–29 (1988).

    Google Scholar 

  24. E. D. Aluker, A. G. Krechetov, A. Y. Mitrofanov, et al., “Laser Initiation of Energetic Materials: Selective Photoinitiation Regime in Pentaerythritol Tetranitrate,” J. Phys. Chem. C 115 (14), 6893–6901 (2011).

    Article  Google Scholar 

  25. A. A. Zvekov, A. V. Kalenskii, B. P. Aduev, et al., “Calculating the Optical Properties of the Pentaerythritol Tetranitrate–Cobalt Nanoparticles Composites,” Zh. Prikl. Spektroskop. 82 (2), 219–226 (2015).

    Google Scholar 

  26. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).

    MATH  Google Scholar 

  27. V. P. Budak, Methods for Solving the Radiative Transfer Equation (Izd. Dom Mosk. Energ. Inst., Moscow, 2007) [in Russian].

    Google Scholar 

  28. A. A. Zvekov, A. V. Kalenskii, A. P. Nikitin, et al., “Modeling the Intensity Distribution in a Transparent Medium with Fresnel Boundaries Containing Aluminum Nanoparticles,” Komp. Opt. 38 (4), 749–756 (2014).

    Article  Google Scholar 

  29. A. A. Zvekov, M. V. Ananyeva, A. V. Kalenskii, et al., “Regularities of Light Diffusion in the Composite Material Pentaery Thriol Tetranitrate–Nickel,” Nanosystems: Phys., Chem., Math. 5 (5), 685–691 (2014).

    Google Scholar 

  30. R. D. M. Garcia, “Radiative Transfer with Polarization in a Multi-Layer Medium Subject to Fresnel Boundary and Interface Conditions,” J. Quant. Spectrosc. Radiat. Transfer. 115 28–45 (2013).

    Article  ADS  Google Scholar 

  31. A. Liemert and A. Kienle, “Green’s Functions for the Two-Dimensional Radiative Transfer Equation in Bounded Media,” J. Phys., A: Math. Theor. 45 175201-10 (2012).

  32. K. S. Shifrin, Light Scattering in Turbid Media (Gos. Izd. Tekh.-Teoret. Lit., Moscow–Leningrad, 1951) [in Russian].

    Google Scholar 

  33. A. V. Kalenskii and M. V. Ananyeva, “Spectral Regularities of the Critical Energy Density of the Pentaerythriol Tetranitrate–Aluminium Nanosystems Initiated by the Laser Pulse,” Nanosystems: Phys., Chem., Math. 5 (6), 803–810 (2014).

    Google Scholar 

  34. K. Kolwa, A. Derkachova, and M. Shopa, “Size Characteristics of Surface Plasmons and Their Manifestation in Scattering Properties of Metal Particles,” J. Quant. Spectrosc. Radiat. Transfer. 110 (14–16), 1490–1501 (2009).

    Article  ADS  Google Scholar 

  35. A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, et al., “The Specific Features of Plasmon Resonance in Nanoparticles of Various Metals,” Opt. Spektroskop. 118 (6), 1012–1021 (2015).

    Google Scholar 

  36. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  37. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., “Laser Initiation of PETN,” Fiz. Goreniya Vzryva 32 (6), 113–119 (1996) [Combust., Expl., Shock Waves 32 (6), 454–459 (1996)].

    Google Scholar 

  38. A. V. Kalenskii, M. V. Anan’eva, A. A. Zvekov, et al., “Paradox of Small Particles in the Pulsed Laser Initiation of Explosive Decomposition of Energetic Materials,” Fiz. Goreniya Vzryva 52 (2), 122–129 (2016) [Combust., Expl., Shock Waves 52 (2), 234–240 (2016)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalenskii.

Additional information

Original Russian Text © A.V. Kalenskii, A.A. Zvekov, M.V. Anan’eva, A.P. Nikitin, B.P. Aduev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenskii, A.V., Zvekov, A.A., Anan’eva, M.V. et al. Effect of multiple scattering on the critical density of the energy used to initiate a PETN–aluminum compound by a neodymium laser pulse. Combust Explos Shock Waves 53, 82–92 (2017). https://doi.org/10.1134/S0010508217010129

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217010129

Keywords

Navigation