Skip to main content
Log in

Relationship between the dust flame propagation velocity and the combustion mode of fuel particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A possibility of determining the regime of combustion of individual fuel particles on the basis of the dependence of the flame velocity on the fuel and oxidizer concentrations is considered by an example of a dust flame of microsized metal particles with diameters d 10 < 15 μm and particle concentrations from ≈1010 to 1011 m−3 in oxygen-containing media at atmospheric pressure. The combustion mode (kinetic or diffusion) is responsible for the qualitative difference in the character of the normal velocity of the flame as a function of the basic parameters of the gas suspension. The analysis of such experimental dependences for fuel-rich mixtures shows that combustion of zirconium particles (d 10 = 4 μm) in a laminar dust flame is controlled by oxidizer diffusion toward the particle surface, whereas combustion of iron particles of a similar size is controlled by kinetics of heterogeneous reactions. For aluminum particles with d 10 = 5–15 μm, there are no clearly expressed features of either kinetic or diffusion mode of combustion. To obtain more information about the processes responsible for combustion of fine aluminum particles, the flame velocity is studied as a function of the particle size and initial temperature of the gas suspension. It is demonstrated that aluminum particles under the experimental conditions considered in this study burn in the transitional mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum, New York, 1969).

    Google Scholar 

  2. D. S. Sundaram, V. Yang, and V. E. Zarko, “Combustion of Nano Aluminum Particles (Review),” Fiz. Goreniya Vzryva 51 (2), 37–63 (2015) [Combust., Expl., Shock Waves 51 (2), 173–196 (2015)].

    Google Scholar 

  3. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Dust in Air,” Combust. Flame 156, 5–13 (2009).

    Article  Google Scholar 

  4. S. Mohan, M. A. Trunov, and E. L. Dreizin, “On Possibility of Vapor-Phase Combustion for Fine Aluminum Particles,” Combust. Flame 156, 2213–2216 (2009).

    Article  Google Scholar 

  5. V. N. Kornilov, A. V. Korobko, and E. N. Kondratyev, “A Correlation Function Method of Recovering the Combustion Law Parameters for Particles Burning in Optically Thin Dust Flames,” Combust. Flame 146, 530–540 (2006).

    Article  Google Scholar 

  6. N. I. Poletaev, “Determination of the Burning Time of Fuel Particles in an Axisymmetric Laminar Flame,” in Chemical and Radiation Physics, Vol. 4, Ed. by A. A. Berlin, G. B. Manelis, A. G. Merzhanov, and I. G. Assovskii (Torus Press, Moscow, 2011), pp. 281–285 [in Russian].

    Google Scholar 

  7. E. N. Rumanov and B. I. Khaikin, “Flame Propagation over a Mixture of Particles in a Gas,” Dokl. Akad. Nauk SSSR 201 (1), 144–147 (1971).

    Google Scholar 

  8. O. M. Todes, A. D. Goltsiker, and A. S. Chivilikhin, “Radiative Mechanism of Flame Formation and Evolution in Aerosol Systems,” Dokl. Akad. Nauk SSSR, 213 (3), 321–324 (1973).

    Google Scholar 

  9. V. G. Shevchuk, A. K. Bezrodnykh, L. V. Boichuk, and E. N. Kondrat’ev, “Laminar Flame Mechanism in Air Suspensions of Metal Particles,” Fiz. Goreniya Vzryva 24 (2), 85–89 (1988) [Combust., Expl., Shock Waves 24 (2), 201–204 (1988)].

    Google Scholar 

  10. S. V. Goroshin, Yr. L. Shoshin, N. D. Ageev, and N. I. Poletaev, “The Premixed Aluminium Dust Laminar Flame Structure,” in Flame Structure (Nauka, Novosibirsk, 1991), Vol. 1, pp. 213–218.

    Google Scholar 

  11. N. I. Poletaev and J. I. Vovchuk, “The Temperature Field of a Laminar Diffusion Dust Flame,” Combust. Flame 99, 706–712 (1994).

    Article  Google Scholar 

  12. N. I. Poletaev and A. V. Florko, “Radiative Characteristics of an Aluminum Dust Flame. Condensed Phase,” Fiz. Goreniya Vzryva 43 (4), 49–58 (2007) [Combust., Expl., Shock Waves 43 (4), 414–422 (2007)].

    Google Scholar 

  13. N. D. Ageev, S. V. Goroshin, A. N. Zolotko, and N. I. Poletaev, “Steady Flame Velocity in Aluminum Gas Suspensions,” in Combustion of Heterogeneous and Gas Systems (Chernogolovka, 1989), pp. 83–85 [in Russian].

    Google Scholar 

  14. S. Goroshin, I. Fomenko, and J. H. S. Lee, “Burning Velocities in Fuel Rich Aluminum Dust Clouds,” in Twenty Sixth Symp. on Combustion (The Combustion Inst., 1996), pp. 1061–1967.

    Google Scholar 

  15. V. G. Shevchuk, L. V. Boychuk, S. V. Goroshin, and Yu. N. Kostyshin, “Comparative Research of the Flame Propagation in Boron and Al, Mg, Zr, Fe Dust Clouds,” in Combustion of Boron-based Solid Propellants and Solid Fuels (CRC Press, Boca Raton, 1993), pp. 478–485.

    Google Scholar 

  16. E. S. Shchetinkov, Physics of Gas Combustion (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  17. V. G. Shevchuk and A. E. Sidorov, “Laminar Flame in Fine-Particle Dusts,” Fiz. Goreniya Vzryva 47 (5), 24–28 (2011) [Combust., Expl., Shock Waves 47 (5), 518–522 (2011)].

    Google Scholar 

  18. A. G. Alekseev and I. V. Sudakova, “Flame Propagation Rate in Air Suspensions of Metal Powders,” Fiz. Goreniya Vzryva 19 (5), 34–36 (1983) [Combust., Expl., Shock Waves 19 (5), 564–565 (1983)].

    Google Scholar 

  19. E. P. Il’chenko, N. I. Poletaev, A. V. Florko, and T. A. Florko, “Investigation of the Characteristics of Dust Flames of Zirconium Particles,” Fiz. Aerodisp. Sistem 42, 66–75 (2005).

    Google Scholar 

  20. N. I. Poletaev, A. N. Zolotko, and Yu. A. Doroshenko, “Degree of Dispersion of Metal Combustion Products in a Laminar Dust Flame,” Fiz. Goreniya Vzryva 47 (2), 30–44 (2011) [Combust., Expl., Shock Waves 47 (2), 153-165 (2011)].

  21. N. I. Poletaev, “Dust Flame of Zirconium Particles - the Flame Structure and Properties of Combustion Products,” in Proc. 7th Int. Seminar on Flame Structure, 7 ISFS: Book of Abstracts (Inst. of Chem. Kinet. and Combust., Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2011), p. 84.

  22. V. A. Fedoseev, “Tracking Method and its Application for Studying Disperse Fuel Combustion Kinetics,” in Thermophysics and Combustion Engineering (Naukova Dumka, Kiev, 1964), pp. 136–139 [in Russian].

    Google Scholar 

  23. V. V. Golovko, N. I. Poletaev, and A. V. Florko, “Role of Radiation in the Thermal Balance of a Laminar Diffusion Flame of Iron,” Fiz. Aerodisp. Sistem 41, 211–223 (2004).

    Google Scholar 

  24. J.-H. Sun, R. Dobash, and T. Hirano, “Structure of Flame Propagation through Metal Particle Clouds and Behavior of Particles,” in Twenty Seventh Symp. on Combustion (The Combustion Inst., 1998), pp. 2405–2411.

    Google Scholar 

  25. N. Birks and G. H. Meier, Introduction to the High Temperature Oxidation of Metals (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  26. T. Bazyn, H. Krier, and N. Glumac, “Evidence for the Transition from the Diffusion-Limit in Aluminum Particle Combustion,” Proc. of the Combust. Inst. 31 (2), 2021–2028 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Poletaev.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 6, pp. 60–69, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, N.I. Relationship between the dust flame propagation velocity and the combustion mode of fuel particles. Combust Explos Shock Waves 52, 673–682 (2016). https://doi.org/10.1134/S0010508216060071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216060071

Keywords

Navigation