Skip to main content
Log in

Laser initiation of compositions based on PETN with submicron coal particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the results of experiments on laser initiation of composites based on PETN and inclusions of submicron coal particles. The thresholds and kinetic characteristics of explosion of mixed compositions based on PETN and inclusions of submicron coal particles (brown coal B and parabituminous coal P) are studied under the impact of neodymium laser (1064 nm; 12 ns), depending on the mass concentration of inclusions in the range of 0–5%. It is shown that the minimum threshold of explosive decomposition of PETN equal to 1.1 J/cm2 can be achieved if the concentration of both types of inclusions is 0.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Ilyushin, I. V. Tselinskii, and A. V. Chernai, “Light-Sensitive Explosives and Compositions and Their Initiation by a Laser Pulse,” Ros. Khim. Zh. 41 (4), 81–88 (1997).

    Google Scholar 

  2. H. Oestmark, M. Carlson, and K. Ekvall, “Laser Ignition of Explosives: Effects of Laser Wavelength on the Threshold Ignition Energy,” J. Energ. Mater. 12 (1/2), 63–83 (1994).

    Article  Google Scholar 

  3. V. B. Ioffe, A. V. Dolgolaptev, V. E. Aleksandrov, and A. P. Obraztsov, “Laser Pulse Ignition of Condensed Systems Containing Aluminum,” Fiz. Goreniya Vzryva 21 (3), 51–54 (1985) [Combust., Expl., Shock Waves 21 (3), 316–320 (1985)].

    Google Scholar 

  4. V. E. Aleksandrov, A. V. Dolgolaptev, V. B. Ioffe, V. M. Koval’chuk, B. V. Levin, A. P. Obraztsov, “Ignition of Condensed Media with Absorbing Additives upon Concentrated Application of Radiant Energy,” Fiz. Goreniya Vzryva 19 (4), 17–20 (1983) [Combust., Expl., Shock Waves 19 (4), 384–386 (1983)].

    Google Scholar 

  5. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, and A. A. Zvekov, “Changing the PETN Sensitivity to Laser Exposure by Adding Nickel and Aluminum Metal Nanoparticles,” Khim. Fiz. 33 (6), 33–41 (2014).

    Google Scholar 

  6. B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, and A. P. Nikitin, “A Study into Light Scattering and Absorption by Aluminum Nanoparticles in PETN,” J. Phys.: Conf. Ser. 552, 012032 (2014).

    ADS  Google Scholar 

  7. B. P. Aduev, D. R. Nurmukhametov, V. P. Tsipilev, and R. I. Furega, “Effect of Ultrafine Al–C Particle Additives on the PETN Sensitivity to Radiation Exposure,” Fiz. Goreniya Vzryva 49 (2), 102–105 (2013) [Combust., Expl., Shock Waves 49 (2), 215–218 (2013)].

    Google Scholar 

  8. B. P. Aduev, G. M. Belokurov, D. R. Nurmukhametov, and N. V. Nelyubina, “Photosensitive Material Based on PETN Mixtures with Aluminum Nanoparticles,” Fiz. Goreniya Vzryva 48 (3), 127–132 (2012) [Combust., Expl., Shock Waves 48 (3), 361–366 (2012)].

    Google Scholar 

  9. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, A. A. Zvekov, A. V. Kalenskii, A. P. Nikitin, and I. Yu. Liskov, “Study on the Optical Properties of Aluminum Nanoparticles in PETN Using an Integrating Sphere,” Zh. Tekh. Fiz. 84 (9), 126–131 (2014).

    Google Scholar 

  10. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, and I. Yu. Liskov, “Study on Light Absorption by the Compounds Based on PETN and Aluminum Nanoparticles under Laser Pulses,” Khim. Fiz. 33 (12), 29–32 (2014).

    Google Scholar 

  11. B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, and R. I. Furega, “Influence of the Size of Inclusions of Ultrafine Nickel Particles on the Laser Initiation Threshold of PETN,” Fiz. Goreniya Vzryva 51 (4), 70–75 (2015) [Combust., Expl., Shock Waves 51 (4), 472–475 (2015)].

    Google Scholar 

  12. G. N. Delyagin, “General Laws of Coal-Particle Combustion,” Fiz. Goreniya Vzryva 19 (4), 110–113 (1983) [Combust., Expl., Shock Waves 19 (4), 475–478 (1983)].

    Google Scholar 

  13. D.-K. Zhang, T. F. Wall, and P. C. Hilist, “The Ignition of Single Pulverized Coal Particles: Minimum Laser Power Required,” Fuel 73 (5), 647–655 (1994).

    Article  Google Scholar 

  14. V. M. Boiko, P. Volan’skii, and V. F. Klimkin, “Development of the Laser-Initiated Ignition of Coal Particles,” Fiz. Goreniya Vzryva 17 (5), 71–77 (1981) [Combust., Expl., Shock Waves 17 (5), 545–549 (1981)].

    Google Scholar 

  15. T. X. Phuoc, M. P. Mathur, and J. M. Ekmann, “High-Energy Nd-YAG Laser Ignition of Coals: Experimental Observations,” Combust. Flame 93 (1–5), 19–30 (1993).

    Article  Google Scholar 

  16. A. A. Karabutova, I. M. Pelivanov, N. B. Podymova, and S. E. Skipetrov, “Measuring the Optical Characteristics of Scattering Media by the Laser Optoacoustic Method,” Kvant. Electron. 29 (3), 215–220 (1999).

    Google Scholar 

  17. B. L. van der Waerden, Mathematical Statistics (Springer Verlag, Berlin–Heidelberg, 1969).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Aduev.

Additional information

Original Russian Text © B.P. Aduev, D.R. Nurmukhametov, N.V. Nelyubina, R.Yu. Kovalev, A.P. Nikitin, A.N. Zaostrovskii, Z.R. Ismagilov.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 5, pp. 108–115, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aduev, B.P., Nurmukhametov, D.R., Nelyubina, N.V. et al. Laser initiation of compositions based on PETN with submicron coal particles. Combust Explos Shock Waves 52, 593–599 (2016). https://doi.org/10.1134/S0010508216050105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216050105

Keywords

Navigation