Skip to main content
Log in

Recording the particle velocity spectrum at the time the shock wave reaches the surface of liquids of different viscosities

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of experimental studies of the cavitation breakdown of liquids in a wide range of shock-wave loading. The free surface velocity of liquids and the velocity spectrum of the cloud of particles and jets were measured using a laser heterodyne interferometer (photon Doppler velocimetry), and their size was determined. The spall strength of distilled water was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Prudhomme, P. Mercier, L. Benier, and P.-A. Frugier, “Frontal and Tilted PDV Probes for Measuring Velocity History of Laser-Shock Induced Calibrated Particles,” J. Phys., Conf. Ser. 500 (2014).

    Google Scholar 

  2. D. Loison, de Resseguier, et al., “Laser Shock-Induced Melting and Fragmentation in Metals,” in Proc. SCCM, Chicago, 2001, pp. 1545–1548.

    Google Scholar 

  3. N. V. Nevmerzhitskii, E. A. Sotskov, E. D. Sen’kovskii, S. A. Abakumov, et al., “Microscopic Optoelectronic Recording of Particle Ejection from the Free Surface of Shock-Loaded Metals and Liquids,” in Proc. XV Khariton’s Scientific Readings (Sarov, 2013).

    Google Scholar 

  4. N. V. Nevmerzhitskii, A. L. Mikhailov, V. A. Raevskii, et al., “Microscopic Optoelectronic Recording of Particle Ejection from the Free Surface of Shock-Loaded Lead,” Vopr. Atomnoi Nauki Tekh., No. 3, 3 (2010).

    Google Scholar 

  5. V. M. Boiko and S. V. Poplavski, “Experimental Study of Two Types of Stripping Breakup of the Drop in the Flow behind the Shock Wave,” Fiz. Goreniya Vzryva 48 (4), 76–82 (2012) [Combust., Expl., Shock Waves 48 (4), 440–445 (2012)].

    Google Scholar 

  6. V. M. Boiko and S. V. Poplavskii, “On the Dynamics of Drop Acceleration at the Early Stage of Velocity Relaxation in a Shock Wave,” Fiz. Goreniya Vzryva 45 (2), 101–108 (2009) [Combust., Expl., Shock Waves 45 (2), 198–204 (2009)].

    Google Scholar 

  7. V. K. Kedrinskii, “Bubble Cluster, Cumulative Jet, and Cavitation Erosion,” Prikl. Mekh. Tekh. Fiz. 37 (4), 22–31 (1996) [J. Appl. Mech. Tech. Phys. 37 (4), 476–483 (1996)].

    Google Scholar 

  8. V. M. Boiko and S. V. Poplavskii, “Dynamics of Particles and Droplets in the Flow behind a Shock Wave,” Izv. Ross. Akad. Nauk., Mekh. Zhidk. Gaza, No. 3, 110–120 (2007).

    MATH  Google Scholar 

  9. B. E. Gelfand, “Droplet Breakup Phenomena in Flows with Velocity Lag,” Prog. Energy Combust. Sci. 22, 201–265 (1996).

    Article  Google Scholar 

  10. V. K. Kedrinskii, V. A. Vshivkov, and G. I. Dudnikova, “Role of Cavitation Effects in Fracture Mechanisms and in Large-Scale Explosion Processes,” Vychisl. Tekhnol. 2 (2), 63 (1997).

    MATH  Google Scholar 

  11. V. K. Kedrinskii, Hydrodynamics of Explosion: Experiment and Models (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  12. A. V. Fedorov, A. L. Mikhailov, L. K. Antonyuk, and I. V. Shmelev, “Experimental Study of the Stripping Breakup of Droplets and Jets after Their Ejection from a Liquid Surface,” Fiz. Goreniya Vzryva 52 (4), 115–121 (2016) [Combust., Expl., Shock Waves 52 (4) 476–481 (2016).

    Google Scholar 

  13. W. T. Buttler, D. M. Oró, D. L. Preston, K. O. Mikaelian, F. J. Cherne, R. S. Hixson, F. G. Mariam, C. Morris, J. B. Stone, G. Terrones, and D. Tupa, “Unstable Richtmyer–Meshkov Growth of Solid and Liquid Metals in Vacuum,” J. Fluid Mech. 703 (July), 60–84 (2012); DOI: http://dx.doi.org/10.1017/jfm.2012.190.

    Google Scholar 

  14. W. T. Buttler, D. M. Oró, and D. L. Preston, et al., “The Study of High Velocity Surface Dynamics Using a Pulsed Proton Beam,” AIP Conf. Proc. 1426, 999–1002 (2012).

    Article  ADS  Google Scholar 

  15. D. S. Sorenson, P. Pazuchanics, and R. Johnson, et al., “Ejecta Particle Formation from Micro-Jets (U),” in Proc. NEDPC-2013 (Los Alamos, 2013).

    Google Scholar 

  16. D. S. Sorenson, R. W. Minich, J. L. Romero, et al., “Ejecta Particle Size Distributions for Shock Loaded Sn and Al Metals,” J. Appl. Phys. 92 (10), 5830 (2002).

    Article  ADS  Google Scholar 

  17. A. B. Georgievskaya and V. A. Raevskii, “Estimation of the Spectral Characteristics of the Particles Ejected from the Free Surface of Metals and Liquids under the Action of a Shock Wave,” in Proc. XIII Khariton’s Scientific Readings (Sarov, 2011), pp. 597.

    Google Scholar 

  18. B. J. Jensen, D. B. Holtkamp, P. A. Rigg, and D. G. Dolan, “Accuracy Limits and Window Corrections for Photon Doppler Velocimetry,” J. Appl. Phys. 101, 013523 (2007).

    Article  ADS  Google Scholar 

  19. O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact System for High-Speed Velocimetry Using Heterodyne Techniques,” Rev. Sci. Instrum. 77, 083108–1–083108–8 (2006).

    Article  ADS  Google Scholar 

  20. Physics of Explosion, Ed. by L. N. Orlenko (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorov.

Additional information

Original Russian Text © A.V. Fedorov, A.L. Mikhailov, S.A. Finyushin, D.A. Kalashnikov, E.A. Chudakov, E.I. Butusov, I.S. Gnutov.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 4, pp. 122–128, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Mikhailov, A.L., Finyushin, S.A. et al. Recording the particle velocity spectrum at the time the shock wave reaches the surface of liquids of different viscosities. Combust Explos Shock Waves 52, 482–487 (2016). https://doi.org/10.1134/S0010508216040122

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216040122

Keywords

Navigation