Skip to main content
Log in

Equation of state of silicon dioxide with allowance for evaporation, dissociation, and ionization

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Based on a previously proposed modified van der Waals model for a mixture, a widerange semi-empirical equation of state for silicon dioxide with due allowance for evaporation, dissociation, and ionization is constructed. In the low-density limit, it transforms to Saha’s equation of state for a mixture of ideal gases consisting of ions and electrons. The model and simplifying assumptions used in constructing the equation of state are described. The values of constitutive parameters are given. Results of model calculations are compared with data obtained in experiments on shock compression of solid and porous quartz samples, isentropic unloading, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kerley, “Equations of State for Composite Materials,” Kerley Publ. Services Rep. No. KPS99-4 (1999).

    Google Scholar 

  2. M. V. Zhernokletov, T. S. Lebedeva, A. B. Medvedev, et al., “Thermodynamic Parameters and Equation of State of Low-Density SiO2 Aerogel,” in Shock Compression of Condensed Matter-2001, Ed. by M. D. Furnish, N. N. Thadhai, and Y. Horie (Amer. Inst. of Physics, New York, 2002), pp. 763–766.

    Google Scholar 

  3. H. J. Melosh, “A Hydrocode Equation of State for SiO2,” Meteor. Planet. Sci. 42, 2079–2097 (2007).

    Article  ADS  Google Scholar 

  4. R. F. Trunin, G. V. Simakov, M. A. Podurets, et al., “Dynamic Compressibility of Quartzite at High Pressures,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 1, 13–20 (1971).

    Google Scholar 

  5. Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter: Reference Book, Ed. by R. F. Trunin (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].

  6. M. D. Knudson and M. P. Desjarlais, “Shock Compression of Quartz to 1.6 TPa: Redefining a Pressure Standard,” Phys. Rev. Lett. 103, 225501 (2009).

    Article  ADS  Google Scholar 

  7. M. D. Knudson and M. P. Desjarlais, “Adiabatic Release Measurements in α-Quartz between 300 and 1 200 GPa: Characterization of α-Quartz as a Shock Standard in the Multimegabar Regime,” Phys. Rev. B 88, 184107 (2013).

    Article  ADS  Google Scholar 

  8. D. G. Hicks and T. R. Boehly, “Shock Compression of Quartz in the High-Pressure Fluid Regime,” Phys. Plasmas 12, 082702 (2005).

    Article  ADS  Google Scholar 

  9. A. B. Medvedev, “Model Equation of State with Allowance for Evaporation, Ionization, and Melting,” Vopr. Atomn. Nauki Tekh., Ser. Teor. Prikl. Fiz., No. 1, 12–19 (1992).

    Google Scholar 

  10. V. P. Kopyshev and A. B. Medvedev, “Thermodynamic Model of Dense and Heated Matter,” Sov. Technol. Rev., Sec. B: Therm. Phys. Rev. 5, 37–93 (1993).

    Google Scholar 

  11. V. P. Kopyshev, A. B. Medvedev, and V. V. Khrustalev, “Equation of State of Explosion Products on the Basis of a Modified Van derWaals Model,” Fiz. Goreniya Vzryva 42 (1), 87–99 (2006) [Combust., Expl., Shock Waves 42 (1), 76–87 (2006)].

    Google Scholar 

  12. A. B. Medvedev, “Equation of State and Transport Coefficients of Argon, Based on a Modified Van der Waals Model up to Pressures of 100 GPa,” Fiz. Goreniya Vzryva 46 (4), 116–126 (2010) [Combust., Expl., Shock Waves 46 (4), 472–481 (2010)].

    Google Scholar 

  13. A. B. Medvedev and R. F. Trunin, “Shock Compression of Porous Metals and Silica Media,” Usp. Fiz. Nauk 182 (8), 829–846 (2012).

    Article  Google Scholar 

  14. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  15. I. B. Rozhdestvenskii, V. P. Shevelev, and K. K. Olevinskii, “Calculation of the Composition and Thermodynamic Functions of Arbitrary Reacting Gas Mixtures,” in Properties of Gases at High Temperatures (Nauka, Moscow, 1967, pp. 14–21) [in Russian].

    Google Scholar 

  16. L. D. Landau and I. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  17. Thermodynamic Properties of Individual Substances: Reference Book, Ed. by V. P. Glushko (Nauka, Moscow, 1978–1982), Vols. 1–4 [in Russian].

  18. A. A. Radtsig and B. M. Smirnov, Reference Book on Nuclear and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  19. A. A. Radtsig and B. M. Smirnov, Parameters of Atoms and Atomic Ions: Reference Book (Energoizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  20. L. D. Landau and I. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1963) [in Russian].

    MATH  Google Scholar 

  21. D. G. Gordeev, L. F. Gudarenko, A. A. Kayakin, and V. G. Kudel’kin, “Equation of State Model For Metals with Ionization Effectively Taken into Account. Equations of State of Tantalum, Tungsten, Aluminum, and Beryllium,” Fiz. Goreniya Vzryva 49 (1), 106–120 (2013) [Combust., Expl. Shock Waves 49 (1), 92–104 (2013)].

    Google Scholar 

  22. G. A. Lyzenga, T. J. Ahrense, and A. C. Mitchell, “Shock Temperature of SiO2 and their Geophysical Implications,” J. Geophys. Res. 88 (3), 2431–2444 (1983).

    Article  ADS  Google Scholar 

  23. D. G. Hicks, T. R. Boehly, J. H. Eggert, et al., “Dissociation of Liquid Silica at High Pressures and Temperatures,” Phys. Rev. Lett. 97 (2), 025502 (2006).

    Article  ADS  Google Scholar 

  24. R. G. Kraus, S. T. Stewart, D. C. Swift, et al., “Shock Vaporization of Silica and the Thermodynamics of Planetary Impact Events,” J. Geophys. Res. 117, E09009 (2012).

    Article  ADS  Google Scholar 

  25. C. E. Ragan, III, “Shock-Wave Experiments at Threefold Compression,” Phys. Rev. A 29 (3), 1391–1402 (1984).

    Article  ADS  Google Scholar 

  26. E. N. Avrorin, B. K. Vodolaga, N. P. Voloshin, et al., “Experimental Study of Shell Effects on Shock Adiabats of Condensed Substances,” Zh. Eksp. Teor. Fiz. 93 (2(8)), 613–626 (1987).

    ADS  Google Scholar 

  27. G. I. Kerley, “Multiphase Equation of State for Iron,” Report No. SAND93-0027 (Sandia National Laboratories, 1993).

    Google Scholar 

  28. A. B. Medvedev, “Wide-Range Multiphase Equation of State for Iron,” Fiz. Goreniya Vzryva 50 (5), 91–108 (2014) [Combust., Expl., Shock Waves 50 (5), 582–598 (2014)].

    Google Scholar 

  29. B. L. Glushak, L. F. Gudarenko, and Yu. M. Styazhkin, “Semi-Empirical Equation of State for Metals with Variable Specific Heats of Nuclei and Electrons,” Vopr. Atomn. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 2, 57–61 (1991).

    Google Scholar 

  30. V. P. Kopyshev, “On Thermodynamics of Nuclei of a Monatomic Substance,” Chisl. Metod. Mekh. Sploshn. Sredy 8 (6), 54–67 (1977).

    Google Scholar 

  31. N. N. Kalitkin, “Thomas–Fermi Atom Model with Quantum and Exchange Corrections,” Zh. Eksp. Teor. Fiz. 38 (5), 1534–1540 (1960).

    MathSciNet  Google Scholar 

  32. J. Wackerle, “Shock-Wave Compression of Quartz,” J. Appl. Phys. 33 (3), 922–937 (1962).

    Article  ADS  Google Scholar 

  33. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California Press, Berkeley–Los Angeles–London, 1980).

  34. A. O. Borshchevskii, M. M. Gorshkov, and A. M. Tarasov, “Shock Adiabat of Twofold Compression of Quartzite at Pressures of 550–1500 kBar,” Fiz. Zemli, No. 4, 28–32 (1998).

    Google Scholar 

  35. T. Qi, M. Millot, R. Kraus, et al., “Optical and Transport Properties of Dense Liquid Silica,” Phys. Plasmas 22, 062706 (2015).

    Article  ADS  Google Scholar 

  36. C. E. Ragan, III, “Shock Compression Measurements at 1 to 7 TPa,” Phys. Rev. A 25 (6), 3360–3375 (1982).

    Article  ADS  Google Scholar 

  37. M. Millot, N. Dubrovinskaia, A. Černok, et al., “Shock Compression of Stishovite and Melting of Silica at Planetary Interior Conditions,” Science 347 (6220), 418–420 (2015).

    Article  ADS  Google Scholar 

  38. V. G. Vildanov, M. M. Gorshkov, V. M. Slobodenjukov, and E. N. Rushkovan, “Shock Compression of Low Initial Density Quartz at Pressures up to 100 GPa,” in Shock Compression of Condensed Matter-1995, Seattle, Washington, August 13–18, 1996, pp. 121–124. (Proc. Amer. Phys. Soc. Topical Group.)

    Google Scholar 

  39. Compendium of Shock Wave Data, Ed. by M. Van Thiel (Univ. of California, Livermore, 1977), Vol. 3.

  40. R. P. Drake, J. J. Carroll, III., T. B. Smith, et al., “Laser Experiments to Simulate Supernova Remnants,” Phys. Plasmas 12 (5), 2142–2148 (2005).

    Google Scholar 

  41. M. D. Knudson and R. W. Lemke, “Shock Response of Low-Density Silica Aerogel in the Multi-Mbar Regime,” J. Appl. Phys. 114, 053510 (2013).

    Article  ADS  Google Scholar 

  42. N. C. Holmes and E. F. See, “Shock Compression of Lowdensity Microcellular Materials,” in Shock Compression of Condensed Matter (Elsevier, 1992), pp. 91–94.

    Google Scholar 

  43. N. C. Holmes, “Shock Compression of Low-Density Foams,” in High-Pressure Science and Technology-1993 (Amer. Inst. of Phys., New York, 1994), pp. 153–156.

    Google Scholar 

  44. D. N. Nikolaev, V. E. Fortov, A. S. Filimonov, et al., “SiO2-Aerogel Plasma Properties in Energy Range up to 65 kJ/g,” in Shock Wave of Condensed Matter-1999 (Amer. Inst. of Phys., New York, 2000), pp. 121–124.

    Google Scholar 

  45. A. Roine, Outokumpu HSC Chemistry for Windows, Version 5 (Outokumpu Research Oy, Finland, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Medvedev.

Additional information

Original Russian Text © A.B. Medvedev.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 4, pp. 101–114, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, A.B. Equation of state of silicon dioxide with allowance for evaporation, dissociation, and ionization. Combust Explos Shock Waves 52, 463–475 (2016). https://doi.org/10.1134/S0010508216040109

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216040109

Keywords

Navigation