Skip to main content
Log in

Influence of the nanoaerosol fraction of industrial coal dust on the combustion of methane–air mixtures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The mechanism of formation of nanosized aerosol particles during mechanical grinding of coal from Kuzbass mines is studied. The concentration and size spectrum of aerosol particles in a mine tunnel during cutter operation were measured using an aerosol spectrometer. It is found that 90% of the particles are less than 200 nm in size. In the nanometer range, there are two peaks corresponding to average diameters of 20 and 150 nm, the first of which is due to single particles, and the second to aggregates consisting of single particles. The formation of aerosol during mechanical coal grinding in a continuous flow mill was studied. The spectrum and morphology of the particles produced in the laboratory mill are in qualitative agreement with those for the nanoaerosol formed in the mine. The influence of the coal aerosol on the combustion of gas mixtures was studied. Laboratory experiments showed that the presence of the nanoaerosol in a lean methane–air mixture significantly increased its explosibility. This was manifested in an increase in the maximum pressure and a significant increase in the pressure rise rate during explosion. The study leads to the conclusion that the nanoaerosol is formed from the organic coal components released into the gas phase during local heating of coal on the cutter teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Lebetski and S. B. Romanchenko, Dust Explosion Hazard of Mining (Promtshlennaya Bezopasnost, Moscow, 2012), Vol. 6 [in Russian].

    Google Scholar 

  2. V. C. Marshall, Major Chemical Hazards (John Wiley, New York, 1987).

    Google Scholar 

  3. Analysis of Explosion Containment Systems in Coal Mines and Evaluation of Their Performance: Research Report of the Interdepartmental Commission on Explosives (Academy of Mining Sciences, Moscow, 2014) [in Russian].

  4. G.-D. Gong, C.-H. Bai, and Q.-M. Liu, “Study on Explosion Process of Methane-Coal Dust Mixture,” J. Coal Sci. Eng. 19 (3), 332–336 (2013).

    Article  Google Scholar 

  5. A. D. Gillies and S. Jackson, “Some Investigations into the Explosibility of Mine Dust Laden Atmospheres,” Coal Operators Conf. Wollongong, 626–640 (1998).

    Google Scholar 

  6. C. Bai, G. Gong, Q. Liu, Y. Chen, and G. Niu, “The Explosion Overpressure Field and Flame Propagation of Methane–Air and Methane–Coal Dust/Air Mixtures,” Saf. Sci. 49, 1349–1354 (2011).

    Article  Google Scholar 

  7. Q. Liu, C. Bai, X. Li, L. Jiang, and W. Dai, “Coal Dust/Air Explosions in a Large-Scale tube,” Fuel 89, 329–335 (2010).

    Article  Google Scholar 

  8. Q. Liu, Y. Hu, C. Bai, and M. Chen, “Methane/Coal Dust/Air Explosions and Their Suppression by Solid Particle Suppressing Agents in a Large-Scale Experimental Tube,” J. Loss Prevent. Process Ind. 26, 310–316 (2013).

    Article  Google Scholar 

  9. S. R. Rockwell and A. S. Rangwala, “Influence of Coal Dust on Premixed Turbulent Methane–Air Flames,” Combust. Flame 160, 635–640 (2013).

    Article  Google Scholar 

  10. A.M. Baklanov, S. V. Valiulin, S. N. Dubtsov, V.V. Zamashchikov, V. I. Klishin, A. E. Kontororvich, A. A. Korzhavin, A. A. Onischuk, D. Yu. Paleev, and P. A. Purtov, “Nanoaerosol Fraction in Industrial Coal Dust and Its Effect on the Explosibility of Coal Dust–Methane–Air Mixtures,” Dokl. Akad. Nauk 461 (3), 295–299 (2015).

    Google Scholar 

  11. A. Ankilov, A. Baklanov, R. Mavliev, S. Eremenko, G. P. Reichel, and A. Majerowicz, “Comparison of the Novosibirsk Automated Diffusion Battery with the Vienna Electron Mobility Spectrometer,” J. Aerosol Sci. 22 (Suppl. 1), S325–S328 (1991).

    Article  Google Scholar 

  12. P. A. Mavliev, A. N. Ankilov, A. M. Baklanov, A. M. Gorbunov, N. A. Kakutkina, K. P. Kutsenogii, S. E. Pashchenko, and V. I. Makarov, “Using a Screen-Type Diffusion Battery to Determine the Aerosol Dispersion,” Kolloid. Zh. 46 (6), 1136–1141 (1984).

    Google Scholar 

  13. R. A. Mavliev and A. N. Ankilov, “Methods of Processing Data for a Screen-Type Diffusion Battery,” Colloid. Zh. 47 (3), 523–530 (1985).

    Google Scholar 

  14. N. A. Fuks, Mechanics of Aerosols (Izd. Akad. Nauk SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  15. Y. S. Cheng, H. C. Yeh, and K. J. Brinsko, “Use ofWire Screens as a Fan Model Filter,” Aerosol Sci. Technol. 4 (2), 165–174 (1985).

    Article  Google Scholar 

  16. Aerosol Measurement: Principles, Techniques, and Applications, Ed. by P. A. Baron and K. Willeke (Wiley Interscience, New York, 2001).

  17. D. Gonzalez, A. G. Nasibulin, A. M. Baklanov, S. D. Shandakov, D. P. Brown, P. Queipo, and E. I. Kauppinen, “A New Thermophoretic Precipitator for Collection of Nanometer-Sized Aerosol Particles,” Aerosol Sci. Technol. 39, 1064–1071 (2005).

    Article  Google Scholar 

  18. W. C. Hinds, Aerosol Technology. Properties, Behavior, and Measurement of Airborne Particles (Wiley Interscience, New York, 1999).

    Google Scholar 

  19. P. C. Reist, Aerosol Science and Technology (McGraw-Hill, New York, 1993).

    Google Scholar 

  20. V. V. Rashevskii, V. B. Artem’ev, and S. A. Silyutin, Quality of SUEK Coals (Kuchkovo Pole, Moscow, 2010).

    Google Scholar 

  21. S. K. Friedlander, Smoke, Dust, and Haze (Oxford Univ. Press, New York–Oxford, 2000).

    Google Scholar 

  22. N. A. Fuks and A. G. Sutugin, Highly Dispersed Aerosols (VINITI, Moscow, 1969) [in Russian].

    Google Scholar 

  23. R. J. Samson, G. W. Mulholland, and J. W. Gentry, “Structural Analysis of Soot Agglomerates,” Langmuir. 3, 272–281 (1987).

    Article  Google Scholar 

  24. S. N. Rogak, U. Baltensperger, and R. C. Flagan, “Measurement of Mass Transfer to Agglomerate Aerosols,” Aerosol Sci. Technol. 14, 447–458 (1991).

    Article  Google Scholar 

  25. V. V. Karasev, A. A. Onischuk, O. G. Glotov, A. M. Baklanov, A. G. Maryasov, V. E. Zarko, V. N. Panfilov, A. I. Levykin, and K. K. Sabelfeld, “Formation of Charged Aggregates of Al2O3 Nanoparticles by Combustion of Aluminum Droplets in Air,” Combust. Flame 138, 40–54 (2004).

    Article  Google Scholar 

  26. A. A. Onischuk, S. di Stasio, V. V. Karasev, et al., “Evolution of Structure and Charge of Soot Aggregates During and After Formation in a Propane/Air Diffusion Flame,” Aerosol Sci. 34, 383–403 (2003).

    Article  Google Scholar 

  27. A. A. Onischuk, V. P. Strunin, V. V. Karasev, and V. N. Panfilov, “Formation of Electrical Dipoles During Agglomeration of Uncharged Particles of Hydrogenated Silicon,” Aerosol Sci. 32, 87–105 (2001).

    Article  Google Scholar 

  28. M. Katzer, A. P. Weber, abd G. Kasper, “Collision Kinetics and Electrostatic Dispersion of Airborne Submicrometer Fractal Agglomerates,” J. Colloid and Interface Sci. 240, 67–77 (2001).

    Article  Google Scholar 

  29. H. D. Jang and S. K. Friedlander, “Restructuring of Chain Aggregates of Titania Nanoparticles in the Gas Phase,” Aerosol Sci. Technol. 29 81–91 (1998).

    Article  Google Scholar 

  30. Physical Quantities, Ed. by I.S. Grigor’ev andE.Z.Meilikhov (Energoizdat, Moscow, 1991) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Onischuk.

Additional information

Original Russian Text © S.V. Valiulin, A.M. Baklanov, S.N. Dubtsov, V.V. Zamaschikov, V.I. Klishin, A.E. Kontorovich, A.A. Korzhavin, A.A. Onischuk, D.Yu. Paleev, P.A. Purtov, L.V. Kuibida.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 4, pp. 36–50, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiulin, S.V., Baklanov, A.M., Dubtsov, S.N. et al. Influence of the nanoaerosol fraction of industrial coal dust on the combustion of methane–air mixtures. Combust Explos Shock Waves 52, 405–417 (2016). https://doi.org/10.1134/S0010508216040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216040043

Keywords

Navigation