Skip to main content
Log in

Determining flammability limits by analyzing diffusive-thermal flame instability. methane–air–diluent mixture

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the method for determining flammability limits with the use of equations for diffusive-thermal stability boundaries. The key parameter responsible for the existence of flammability limits is the thermal effect produced by the combustion of gas mixtures. The thermal effect and the equation for diffusive-thermal stability boundaries are used to determine a minimum flame temperature below which combustion is impossible. Flammability limits are significantly affected by the heat capacity of components of the mixture if it is strongly dependent on temperature. For upper and lower flammability limits, a minimum flame temperature is generally different and dependent on the relative concentration and properties of the diluent. The theoretical methods for calculating flammability limits are tested according to the experimental data on the combustion of a methane–air–diluent mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors (Bureau of Mines, Washington, 1965).

    Google Scholar 

  2. B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic Press, New York, 1987).

    Google Scholar 

  3. A. L. Sanshez and F. A. Williams, “Recent Advances in Understanding of Flammability Characteristics of Hydrogen (Review),” Prog. Energ. Combust. Sci. 41, 1–55 (2014).

    Article  Google Scholar 

  4. U. J. Pfahe, M. C. Ross, J. E. Shepperd, K. O. Pasamehetoglu, and C. Unal, “Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4–NH3–N2O–O2–N2 Mixtures,” Combust. Flame 13 (1–2), 140–158 (2000).

    Google Scholar 

  5. Li Qiao, W. J. A. Dahm, M. F. Gerard, and S. O. Elane, “Burning Velocities and Flammability Limits of Premixed Methane/Air/Diluents Flames in Microgravity,” in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7–10, 2008.

  6. V. V. Azatyan, Yu. N. Shebeko, I. A. Bolod’yan, and V. Yu. Navtsenya, “Effect of Diluents of Various Chemical Nature on the Flammability Limits of Gas Mixtures,” Fiz. Goreniya Vzryva 42 (6), 96–102 (2006) [Combust., Expl., Shock Waves 42 (6), 708–714 (2006)].

    Google Scholar 

  7. V. V. Azatyan, I. A. Bolod’yan, V. Yu. Navtsenya, and Yu. N. Shebeko, “The Dominant Role of the Competition of Branching and Termination of Reaction Chains in the Formation of the Flammability Limits of Flame Propagation,” Zh. Tekh. Fiz. 76 (5), 775–784 (2002).

    Google Scholar 

  8. V. V. Azatyan, I. A. Bolod’yan, S. N. Kopylov, N. M. Rubtsov, and Yu. N. Shebeko, “Kinetic Regimes of Developed Chain Combustion,” Fiz. Goreniya Vzryva 39 (3), 127–137 (2003) [Combust., Expl., Shock Waves 39 (3), 354–363 (2003)].

    Google Scholar 

  9. T. T. Aung and S. Kadowaki, “The Effects of Unburned-Gas Temperature and Heat Loss on the Diffusive-Thermal Instability of Premixed Flames,” J. Therm. Sci. Technol. 8 (1), 323–335 (2013).

    Article  Google Scholar 

  10. S. Kadowaki, M. Yahata, and H. Kobayashi, “Effects of the Unburned-Gas Temperature and Lewis Number on the Intrinsic Instability of High-Temperature Premixed Flames,” J. Therm. Sci. Technol. 6 (3), 376–390 (2011).

    Article  Google Scholar 

  11. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  12. F. A. Williams, Combustion Theory (The Benjamin/Cummings, San Francisco, 1985).

    Google Scholar 

  13. O. Zik and E. Moses, “Fingering Instability in Combustion: An Extended View,” Phys. Rev. E 60 (1), 518–531 (1999).

    Article  ADS  Google Scholar 

  14. C. Kaiser, J.-B. Liu, and P. D. Ronney, “Diffusive-Thermal Instability of Counter Flow Flames at Low Lewis Number,” in 38th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 10–13, 2000.

  15. E. Hu, J. Fu, L. Pan, X. Jiang, Z. Huang, and Y. Zhang, “Experimental and Numerical Study on the Effect of Composition on Laminar Burning Velocities of H2/CO/N2/CO2/Air Mixtures,” Int. J. Hydrogen Energ. 37, 18509–18519 (2012).

    Article  Google Scholar 

  16. D. B. Spalding, Combustion and Mass Transfer (Pergamon Press, Oxford–New York, 1979).

    Google Scholar 

  17. K. O. Sabdenov and M. Erzada, “Mechanism of the Negative Erosion Effect,” Fiz. Goreniya Vzryva 49 (3), 22–33 (2013) [Combust., Expl., Shock Waves 49 (3), 273–282 (2013)].

    Google Scholar 

  18. K. O. Sabdenov, “The Nature of Flammability Limits,” Izv. Tomsk. Politekh. Univ., No. 4, 41–40 (2007).

    Google Scholar 

  19. K. O. Sabdenov and T. M. Baitasov, “The Thermal Nature of Flammability Limits,” Inzh. Fiz. Zh. 88 (3), 716–721 (2015).

    Google Scholar 

  20. M. Vidal, W. J. Rogers, J. C. Holste, and M. S. Mannan, “A Review of Estimation Methods for Flash Points and Flammability Limits,” Process Saf. Prog. 23 (1), 47–55 (2004).

    Article  Google Scholar 

  21. A. N. Lopanov and E. A. Fanina, “Simulation of Flame Distribution Under Adiabatic Conditions,” Tekhnol. Tekhnosfer. Bezopasnosti 1 (47), 1–4 (2013); http://ipb.mos.ru.ttb.

    Google Scholar 

  22. N. N. Semenov, Chain Reactions (Nauka, Moscow, 1986).

    Google Scholar 

  23. N. M. Emanuel and D. G. Knorre, Chemical Kinetics Course (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  24. G. I. Barenblatt, Ya. B. Zeldovich, and A. T. Istratov, “On the Theory of Thermal-Diffusive Instability of Laminar Flame,” Prikl. Mekh. Tekh. Fiz. 4, 21–26 (1962).

    Google Scholar 

  25. A. P. Aldushin and S. G. Kasparyan, “On the Thermal-Diffusive Instability of the Combustion Front,” Dokl. Akad. Nauk SSSR 244 (1), 67–70 (1979).

    Google Scholar 

  26. K. O. Sabdenov, “On the Thermal-Diffusive Instability of the Laminar Flame,” Inzh.-Fiz. Zh. 75 (4), 73–79 (2002).

    Google Scholar 

  27. Sh. Kondo, K. Takizawa, A. Takahashi, K. Tokuhashi, and A. Sekiya, “A Study on flammability limits of Fuel Mixtures,” J. Hazard. Mater. 155 (3), 440–448 (2008).

    Article  Google Scholar 

  28. Sh. Kondo, K. Takizawa, A. Takahashi, K. Tokuhashi, and A. Sekiya, “Flammability Limits of Five Selected Compounds Each Mixed with HFC-125,” Fire Saf. J. 44 (2), 192–197 (2009).

    Article  Google Scholar 

  29. E. R. Shrager, I. M. Vasenin, and K. O. Sabdenov, “Comparative Analysis of the Results of Solving the Problem of the Diffusion-Thermal Flame Instability,” Math. Tom. Polytechnic. Univ. 308 (6), 28–33 (2005).

    Google Scholar 

  30. V. A. K udinov, Engineering Thermodynamics (Vysshaya Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  31. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  32. N. B. Vargaftik, Guide on the Thermophysical Properties of Liquids and Gases (Nauka, Moscow, 1972).

    Google Scholar 

  33. Chemist’s Handbook, Ed. by B. P. Nikolskii (Khimiya, Moscow, 1982) [in Russian].

  34. W. E. Baker, P. A. Cox, P. S. Westine, J. J. Kulesz, and R. A. Strehlow, Explosion Hazards and Evaluation (Elsevier, Amsterdam–Oxford–New York, 1983).

    Google Scholar 

  35. P. G. Demidov, V. A. Shandyba, and V. A. Shcheglov, The Combustion and Properties of Flammable Substances (Khimiya, Moscow, 1981) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Sabdenov.

Additional information

Original Russian Text © K.O. Sabdenov.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 4, pp. 24–35, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabdenov, K.O. Determining flammability limits by analyzing diffusive-thermal flame instability. methane–air–diluent mixture. Combust Explos Shock Waves 52, 394–404 (2016). https://doi.org/10.1134/S0010508216040031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216040031

Keywords

Navigation