Skip to main content
Log in

Promoting effect of halogen- and phosphorus-containing flame retardants on the autoignition of a methane–oxygen mixture

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents a numerical and experimental study of the effect of flame-retardant additives on the autoignition of methane behind shock waves. It is shown that at a temperature of 1300–1900 K, the compounds CCl4, CF3H, and (CH3O)3PO not only do not suppress ignition but significantly reduce the induction time of methane–oxygen mixtures. A kinetic mechanism is proposed which relates the promoting effect to the reactivity of the pyrolysis products of the additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Hastie, “Molecular Basis of Flame Inhibition,” J. Res. Nat. Bur. Stand. 77A, 733–754 (1973).

    Article  Google Scholar 

  2. K. S. Shin, K. Park, and K. Kim, “The Addition Effect of CH3Cl on Methane Ignition behind Reflected Shock Waves,” Bull. Korean Chem. Soc. 22, 330–332 (2001).

    Google Scholar 

  3. V. Babushok, T. Noto, D. R. F. Burgess, A. Hamins, and W. Tsang, “Influence of CF3I, CF3Br, and CF3H on the High-Temperature Combustion of Methane,” Combust. Flame 107, 351–367 (1996).

    Article  Google Scholar 

  4. V. V. Azatyan, Yu. N. Shebeko, A. Yu. Shebeko, and V. Yu. Navtsenya, “On the Promotion and Inhibition of Methane Combustion in Oxidizing Environments with Different Oxygen Contents by Fluorinated Hydrocarbon,” Khim. Fiz. 29 (9), 42–51 (2010).

    Google Scholar 

  5. J. C. Baugé, P. A. Glaude, P. Pommier, F. Battin Leclerc, G. Scacchi, G. M. Côme, F. Baronnet, and C. Paillard, “Experimental and Modelling Study of the Effect of CF3H, C2F6 and CF3Br on the Ignition Delays of Methane–Oxygen–Argon Mixtures behind Shock Waves,” J. Chim. Phys. Phys.-Chim. Biol. 94, 460–476 (1997).

    Google Scholar 

  6. A. V. Drakon, A. V. Emelianov, and A. V. Eremin, “Influence of CF3H and CCl4 Additives on Acetylene Detonation,” Shock Waves 24, 231–237 (2014).

    Article  ADS  Google Scholar 

  7. V. I. Babushok, G. T. Linteris, and O. C. Meier, “Combustion Properties of Halogenated Fire Suppressants,” Combust. Flame 159, 3569–3575 (2012).

    Article  Google Scholar 

  8. Montreal Protocol on Substances that Deplete the Ozone Layer, Montreal, September 16, 1987.

  9. “Johnston Atoll Chemical Agent Disposal System,” in Green Cover Review Draft. Final Second Supplemental Environmental Impact Statement for the Storage and Ultimate Disposal of the European Chemical Munitions Stockpile, April 1990.

  10. O. Korobeinichev, V. Shvartsberg, A. Chernov, and V. Mokrushin, “Hydrogen–Oxygen Flame Doped with Trimethyl Phosphate, Its Structure and Trimethyl Phosphate Destruction Chemistry,” Proc. Combust. Inst. 1035–1042 (1996).

    Google Scholar 

  11. J. H. Werner and T. A. Cool, “Kinetic Model for the Decomposition of DMMP in a Hydrogen/Oxygen Flame,” Combust. Flame 117, 78–98 (1999).

    Article  Google Scholar 

  12. O. P. Korobeinichev, S. B. Ilyin, V. M. Shvartsberg, and A. A. Chernov, “The Destruction Chemistry of Organophosphorus Compounds in Flames—I: Quantitative Determination of Final Phosphorus-Containing Species in Hydrogen–Oxygen Flames,” Combust. Flame 118, 718–726 (1999).

    Article  Google Scholar 

  13. O. P. Korobeinichev, V. M. Shvartsberg, and A. A. Chernov, “The Destruction Chemistry of Organophosphorus Compounds in Flames—II: Structure of a Hydrogen–Oxygen Flame Doped with Trimethyl Phosphate,” Combust. Flame 118, 727–732 (1999).

    Article  Google Scholar 

  14. P. A. Glaude, H. J. Curran, J. W. Pitz, and C. K. Westbrook, “Kinetic Study of the Combustion of Organophosphorus Compounds,” Proc. Combust. Inst. 28, 1749 (2001).

    Article  Google Scholar 

  15. O. P. Korobeinichev, S. B. Ilyin, T. A. Bolshova, V. M. Shvartsberg, and A. A. Chernov, “The Chemistry of the Destruction of Organophosphorus Compounds in Flames—III: The Destruction of DMMP and TMP in a Flame of Hydrogen and Oxygen,” Combust. Flame 121, 593–609 (2000).

    Article  Google Scholar 

  16. J. W. Hastie and D. W. Bonnell, “Molecular Chemistry of Inhibited Combustion Systems,” NBSIR 80-2169. Nat. Bur. Stand., 1980.

    Google Scholar 

  17. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, T. A. Bolshova, T. M. Jayaweera, C. F. Melius, W. J. Pitz, and C. K. Westbrook, “Flame Inhibition by Phosphorus-Containing Compounds in Lean and Rich Propane Flames,” Proc. Combust. Inst. 30 (2), 2353–2360 (2004).

    Article  Google Scholar 

  18. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, “Inhibition of Atmospheric Lean and Rich CH4/O2/Ar Flames by Phosphorus-Containing Compound,” Proc. Combust. Inst. 31 (2), 2741–2748 (2007).

    Article  Google Scholar 

  19. T. M. Jayaweera, C. F. Melius, W. J. Pitz, C. K. Westbrook, O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, and H. Curran, “Flame Inhibition by Organophosphorus-Containing Compounds over a Range of Equivalence Ratios,” Combust. Flame 140 (1/2), 103–115 (2005).

    Article  Google Scholar 

  20. V. M. Shvartsberg, A. G. Shmakov, T. A. Bolshova, and O. P. Korobeinichev, “Mechanism for Inhibition of Atmospheric-Pressure Syngas/Air Flames by Trimethylphosphate,” Energy Fuels 26 (9), 5528–5536 (2012).

    Article  Google Scholar 

  21. O. P. Korobeinichev, I. V. Rybitskaya, A. G. Shmakov, A. A. Chernov, T. A. Bolshova, and V. M. Shvartsberg, “Inhibition of Atmospheric-Pressure H2/O2/N2 Flames by Trimethylphosphate over Range of Equivalence Ratio,” Proc. Combust. Inst. 32, 2591–2597 (2009).

    Article  Google Scholar 

  22. O. P. Korobeinichev, T. A. Bolshova, V. M. Shvartsberg, and A. A. Chernov, “Inhibition and Promotion of Combustion by Organophosphorus Compounds Added to Flames of CH4 or H2 in O2 and Ar,” Combust. Flame 125 (1/2), 744–751 (2001).

    Article  Google Scholar 

  23. D. A. Knyazkov, O. P. Korobeinichev, and A. G. Shmakov, “Investigation of the Structure of a CH4/N2—O2/N2 Counterflow Diffusion Flame Using Molecular Beam and Microprobe Mass Spectrometry,” Fiz. Goreniya Vzryva 42 (4), 26–33 (2006) [Combust., Expl., Shock Waves 42 (4), 389–395 (2006)].

    Google Scholar 

  24. O. P. Korobeinichev and T. A. Bolshova, “Increasing the Burning Velocity of a Low-Pressure Hydrogen–Oxygen Flame by the Addition of Trimethyl Phosphate in Terms of Zeldovich’s Chain Mechanism of Flame Propagation,” Fiz. Goreniya Vzryva 47 (1), 15–21 (2011) [Combust., Expl., Shock Waves 47 (1), 1218 (2011)].

    Google Scholar 

  25. A. G. Shmakov, O. P. Korobeinichev, V. M. Shvartsberg, S. A. Yakimov, A. N. Baratov, S. N. Kopylov, and D. B. Zhiganov, “Suppression of Hydrocarbon Flames by Organophosphorus Compounds and Their Based Mixtures,” Fiz. Goreniya Vzryva 44 (3), 22–29 (2008) [Combust., Expl., Shock Waves, 44 (3), 266–272 (2008)].

    Google Scholar 

  26. A. G. Shmakov, O. P. Korobeinichev, V. M. Shvartsberg, D. A. Knyazkov, T. A. Bolshova, and I. V. Rybitskaya, “Inhibition of Premixed and Non-Premixed Flames with Phosphorus-Containing Compounds,” Proc. Combust. Inst. 30, 2345–2351 (2005).

    Article  Google Scholar 

  27. D. A. Knyazkov, S. A. Yakimov, O. P. Korobeinichev, and A. G. Shmakov, “Effect of Trimethylphosphate Additives on the Flammability Concentration Limits of Premixed Methane–Air Mixtures,” Fiz. Goreniya Vzryva 44 (1), 12–21 (2008) [Combust. Expl., Shock Waves 44 (1), 9–17 (2008)].

    Google Scholar 

  28. Organophosphorus Compounds Effect on Flame Speeds over a Range of Equivalence Ratios, 2004; https://combustion.llnl.gov/mechanisms/organophosphorus-compounds/effect-on-flame-speeds.

  29. A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York, 1963).

    Google Scholar 

  30. A. Lutz, R. Kee, and J. Miller, “Senkin: A Fortran Program for Predicting Homogeneous Gas-Phase Chemical Kinetics and Sensitivity Analysis,” Report No. SAND 87-8248 UC-4 (Sandia National Laboratories, 1987).

    Google Scholar 

  31. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,” Report No. SAND89-8009B (Sandia National Laboratories, 1994).

    Google Scholar 

  32. C. J. Cobos, A. E. Croce, K. Luther, and H.-J. Troe, “Experimental and Modelling Study of the Unimolecular Thermal Decomposition of CHF3,” Z. Phys. Chem. 225, 1019–1028 (2011).

    Article  Google Scholar 

  33. C. J. Cobos, A. E. Croce, K. Luther, L. Sölter, E. Tellbach, and J. Troe, “Experimental and Modeling Study of the Reaction C2F4(+M) ↔ CF2 + CF2 (+M),” J. Phys. Chem. A 117, 11420–11429 (2013).

    Article  Google Scholar 

  34. C. J. Cobos, A. E. Croce, K. Luther, and J. Troe, “Shock Wave Study of the Thermal Decomposition of CF3 and CF2 Radicals,” J. Phys. Chem. A 114, 4755–4761 (2010).

    Article  Google Scholar 

  35. A. P. Modica, “Kinetics and Equilibria of the Difluorocarbene Radical Decomposition behind Shock Waves,” J. Chem. Phys. 44, 1585–1589 (1966).

    Article  ADS  Google Scholar 

  36. D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague, “Evaluated Kinetic Data for High Temperature Reactions: Volume 4, Homogeneous Gas Phase Reactions of Halogen and Cyanide Containing Species,” J. Phys. Chem. Ref. Data 10, 1–721 (1981).

    Article  Google Scholar 

  37. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr, J. A. Kerr, M. J. Rossi, and J. Troe, “Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry,” J. Phys. Chem. Ref. Data 26, 521–1011 (1997).

    Article  ADS  Google Scholar 

  38. E. L. Keating and R. A. Matula, “The High Temperature Oxidation of Tetrafluoroethylene,” J. Chem. Phys. 66, 1237–1244 (1977).

    Article  ADS  Google Scholar 

  39. H. Yu, E. M. Kennedy, J. C. Mackie, and B. Z. Dlugogorski, “An Experimental and Kinetic Modeling Study of the Reaction of CHF3 with Methane,” Environ. Sci. Technol. 40, 5778–5785 (2006).

    Article  ADS  Google Scholar 

  40. Y. Yamamori, K. Takahashi, and T. Inomata, “Shock-Tube Studies on the Reactions of CF2(X1A1) with O(3P) and H Atoms,” J. Phys. Chem. A 103, 8803–8811 (1999).

    Article  Google Scholar 

  41. A. P. Modica, “Chemical Kinetics of Carbonyl Fluoride Decomposition in Shock Waves,” J. Phys. Chem. 74, 1194–1204 (1970).

    Article  Google Scholar 

  42. Y. Hidaka, T. Nakamura, and H. Kawano, “High Temperature Pyrolysis of CF3Br in Shock Waves,” Chem. Phys. Lett. 154, 573–576 (1989).

    Article  ADS  Google Scholar 

  43. E. Tschuilow-Roux, “Kinetics of the Thermal Decomposition of C2F6 in the Presence of H2 at 1300–1600 K,” J. Chem. Phys. 43, 2251–2256 (1965).

    Article  ADS  Google Scholar 

  44. H. Richter, J. Vandooren, and P. J. Van Tiggelen, “Decay Mechanism of CF3H or CF2 HCl in H2/O2/Ar Flames,” Symp. Int. Combust. Proc. 25, 825–831 (1994).

    Article  Google Scholar 

  45. S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, A. F. Wagner, and L. B. Harding, “Ab Initio Calculations and Three Different Applications of Unimolecular Rate Theory for the Dissociations of CCl4, CFCl3, CF2Cl2, and CF3 Cl,” J. Phys. Chem. 100, 7541–7549 (1996).

    Article  Google Scholar 

  46. J. V. Michael, I. P. Lim, S. S. Kumaran, and J. H. Kiefer, “Thermal Decomposition of Carbon Tetrachloride,” J. Phys. Chem. 97, 1914–1919 (1993).

    Article  Google Scholar 

  47. S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, S. J. Klippenstein, J. DiFelice, P. S. Mudipalli, J. H. Kiefer, D. A. Dixon, and K. A. Peterson, “Experiments and Theory on the Thermal Decomposition of CHCl3 and the Reactions of CCl2,” J. Phys. Chem. A 101, 8653–8661 (1997).

    Article  Google Scholar 

  48. J. C. Leylegian, C. K. Law, and H. Wang, “Laminar Flame Speeds and Oxidation Kinetics of Tetrachloromethane,” in Proc. of 27th Symp. Combustion, 1998, pp. 529–536.

    Google Scholar 

  49. M. Aghsaee, A. Drakon, A. Eremin, S. Dürrstein, H. Böhm, H. Somnitz, M. Fikri, and C. Schulz, “Experimental Investigation and Modeling of the Kinetics of CCl4 Pyrolysis behind Reflected Shock Waves Using High-Repetition-Rate Time-of-Flight Mass Spectrometry,” Phys. Chem. Chem. Phys. 28, 2821–2828 (2013).

    Article  Google Scholar 

  50. M. Pesa, M. J. Pilling, S. H. Robertson, and D. M. Wardlaw, “Application of the Canonical Flexible Transition State Theory to CH3, CF3, and CCl3,” J. Phys. Chem. A 102, 8526–8536 (1998).

    Article  Google Scholar 

  51. G. Huybrechts, I. Theys, and B. Van Mele, “The Pyrolysis of CCl4 and C2Cl6 in the Gas Phase. Mechanistic Modeling by Thermodynamic and Kinetic Parameter Estimation,” Int. J. Chem. Kinet. 28, 755–761 (1996).

    Article  Google Scholar 

  52. M. Weissman and S. W. Benson, “Mechanism of Pyrolysis of C2Cl6,” Int. J. Chem. Kinet. 12, 403–415 (1996).

    Article  Google Scholar 

  53. S. Dusoleil, P. Goldfinger, A. M. Mahieu-Van Der Auwera, G. Martens, and D. Van Der Auwera, “Elementary Rate Constants in Atomic Chlorination Reactions. Pt 1. Experiments in Intermittent Light,” Trans. Faraday Soc. 57, 2197–2209 (1961).

    Article  Google Scholar 

  54. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, “Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling,” NASA Panel for Data Evaluation. Evaluation No. 12, JPL Publ. 97-4 (1997), pp. 1–266; http://kinetics.nist.gov/kinetics/Detailid= 1997DEM/SAN1-266:178.

    Google Scholar 

  55. V. F. Zabel, “Thermal Gas-Phase Decomposition of Chloroethylenes. II. Vinyl Chloride,” Ber. Bunsenges. Phys. Chem. 78, 232–240 (1977).

    Google Scholar 

  56. S. W. Mayer, L. Schieler, and H. S. Johnston, “Computation of High-Temperature Rate Constants for Bimolecular Reactions of Combustion Products,” Symp. Int. Combust. Proc. 11, 837–844 (1967).

    Article  Google Scholar 

  57. H. A. Michelsen and W. R. Simpson, “Relating State-Dependent Cross Sections to Non-Arrhenius Behavior for the Cl + CH4 Reaction,” J. Phys. Chem. A 105, 1476–1488 (2001).

    Article  Google Scholar 

  58. A. Goldbach, F. Temps, and H. Gg. Wagner, “Kinetics of the Reactions of CH2 (X3B1) with HCl and HBr,” Ber. Bunsenges. Phys. Chem. 94, 1367–1371 (1990).

    Article  Google Scholar 

  59. J. K. Parker, W. A. Payne, R. J. Cody, F. L. Nesbitt, L. J. Stief, S. J. Klippenstein, and L. B. Harding, “Direct Measurement and Theoretical Calculation of the Rate Coefficient for Cl + CH3 in the Range from T = 202–298 K,” J. Phys. Chem. A 111, 1015–1023 (2007).

    Article  Google Scholar 

  60. B. C. Garrett and D. G. Truhlar, “Generalized Transition State Theory. Canonical Variational Calculations Using the Bond Energy-Bond Order Method for Bimolecular Reactions of Combustion Products,” J. Amer. Chem. Soc. 101, 5207–5217 (1979).

    Article  Google Scholar 

  61. R. Timonen, “Kinetics of the Reactions of Some Polyatomic Free Radicals with Cl2 and Br2, and Reactions of Formyl Radicals with O2, NO2, Cl2, Br2, and HAtoms,” Ann. Acad. Sci. Fenn., Ser. A 2 218, 5–45 (1988).

    Google Scholar 

  62. J. T. Herron, “Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(3P) with Saturated Organic Compounds in the Gas Phase,” Phys. Chem. Ref. Data 17, 967–1026 (1988).

    Article  ADS  Google Scholar 

  63. F. Louis, C. A. Gonzalez, and J. P. Sawerysyn, “Direct Combined ab Initio/Transition State Theory Study of the Kinetics of the Abstraction Reactions of Halogenated Methanes with Hydrogen Atoms,” J. Phys. Chem. A 108, 10586–10593 (2004).

    Article  Google Scholar 

  64. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0; http://www.me.berkeley.edu/gri mech/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eremin.

Additional information

Original Russian Text © A.V. Drakon, A.V. Eremin, O.P. Korobeinichev, V.M. Shvartsberg, A.G. Shmakov.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 4, pp. 3–14, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakon, A.V., Eremin, A.V., Korobeinichev, O.P. et al. Promoting effect of halogen- and phosphorus-containing flame retardants on the autoignition of a methane–oxygen mixture. Combust Explos Shock Waves 52, 375–385 (2016). https://doi.org/10.1134/S0010508216040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216040018

Keywords

Navigation