Skip to main content
Log in

Kinetic manifestations of low-temperature combustion of hydrocarbons and hydrogen: Cool and intermittent flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Phenomena inherent in degenerate branched and completely branched chain reactions are considered from a unified viewpoint. In the case of degenerate branched chain reactions, such phenomena include a negative temperature coefficient, cool flames, and oscillations arising in slow combustion of hydrocarbons. Another phenomenon (intermittent flames) is inherent only in completely branched chain reaction of low-temperature combustion of hydrogen at reduced pressures in the presence of SO2 additives. These kinetic manifestations of chain branching processes are characterized by a variety of elementary reactions with participation of intermediate compounds and free radicals with different structures. A specific kinetic feature of reactions of both types is simultaneous participation of the active center responsible for chain branching in the branched reaction and in the reaction of propagation of an ordinary chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Davy, “Some New Experiments and Observations on the Combustion of Gaseous Mixtures, with an Account of a Method of Preserving a Continued Light in Mixtures of in Flammable Gases and Air without Flame,” Philos. Trans. Roy. Soc., London 107, 77–86 (1817).

    Article  Google Scholar 

  2. D. M. Newitt and L. S. Thornes, “The Oxidation of Propane. The Products of the Slow Oxidation at Atmospheric and Reduced Pressures,” J. Chem. Soc., 1656 (1937).

  3. J. H. Knox and R. G. W. Norrish, “Cool Flame Phenomena in the Oxidation of Ethane,” Trans. Faraday Soc. 50, 928–933 (1954).

    Article  Google Scholar 

  4. R. A. Fish, “The Cool Flames of Hydrocarbons,” Angev. Chem. Int. Ed. Eng. 7 (1), 45–60 (1968).

    Article  Google Scholar 

  5. C. H. Yang and B. F. Gray, “Slow Oxidation of Hydrocarbons and Cool Flames,” J. Phys. Chem. 73 (10), 3395–3406 (1969).

    Article  Google Scholar 

  6. J. F. Griffiths, “Negative Temperature-Coefficient of Reaction Rate during Hydrocarbon Oxidation,” J. Chem. Soc. D, No. 9, 483b–484 (1969).

    Article  Google Scholar 

  7. V. Ya. Shtern, Mechanism of Gas-Phase Oxidation of Hydrocarbons (Izd. Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  8. H. Pearlman, “Multiple Cool Flames in Static, Unstirred Reactors under Reduced-Gravity and Terrestrial Conditions,” Combust. Flame 148, 208–284 (2007).

    Article  Google Scholar 

  9. D. B. Lenhert, D. L. Miller, N. P. Cernansky, and K. G. Ovens, “The Oxidation of Gasoline Surrogate in the Negative Temperature Coefficient Region,” Combust. Flame 156, 549–564 (2009).

    Article  Google Scholar 

  10. G. Vanhove, G. Petit, and R. Minettyi, “Experimental Study of the Kinetic Interactions in the Low-Temperature Autoignition of Hydrocarbon Binary Mixture and Surrogate Fuel,” Combust. Flame 145 (4), 521–532 (2006).

    Article  Google Scholar 

  11. W. J. Pitz and Ch. Mueller, “Recent Progress in the Development of Diesel Surrogate Fuels,” Prog. Energy Combust. Sci. 37 (3), 330–350 (2011).

    Article  Google Scholar 

  12. O. Herbient, W. J. Pitz, and Ch. Westbrook, “Detailed Chemical Kinetic Mechanism for the Oxidation of Biodiesel Fuels Blend Surrogate,” Combust. Flame 157, 893–908 (2010).

    Article  Google Scholar 

  13. G. Mittal and C.-J. Sung, “Autoignition of Methylciclohexane at Elevated Pressures,” Combust. Flame 156, 1852–1855 (2009).

    Article  Google Scholar 

  14. Yu. Zhang and A. L. Boehman, “Oxidation of 1-Butanol and Mixture of n-Heptan/1-Butanol in Motored Engine,” Combust. Flame 157, 1816–1824 (2010).

    Article  Google Scholar 

  15. S. Saxena and I. D. Bedoya, “Fundamental Phenomena Affecting Low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending these Limits,” Prog. Energy Combust. Sci. 39 (5), 457–488 (2013).

    Article  Google Scholar 

  16. W. J. Pitz and Ch. Westbrook, “Chemical Kinetics of the High Pressure Oxidation of n-Butane and its Relation to Engine Knock,” Combust. Flame 63, 113–133 (1986).

    Article  Google Scholar 

  17. A. A. Mantashyan and A. Zh. Mikaelyan, “Stable and Pulsed Low-Temperature Chain Flames of Hydrogen in the Presence of SO2,” Khim. Zh. Armenii 59 (2), 8–17 (2006).

    Google Scholar 

  18. A. A. Mantashyan, E. M. Makaryan, A. M. Avetisyan, et al., “Effect of SO2 on the Chain Reaction of Hydrogen Oxidation: Intermittent Flames,” Fiz. Goreniya Vzryva 50 (1), 3–12 (2014) [Combust., Explos., Shock Waves 50 (1), 1–9 (2014)].

    Google Scholar 

  19. A. A. Mantashyan, E. M. Makaryan, A. M. Avetisyan, et al., “Specific Features of Low-Temperature Combustion of Hydrogen–Oxygen Mixtures Containing SO2. Intermittent Flames,” Khim. Zh. Armenii 67 (1), 1–17 (2014).

    Google Scholar 

  20. A. A. Mantashyan and A. B. Nalbandyan, “New Ways of Studying Gas-Phase Reactions by the Method of the Electron Paramagnetic Resonance,” Zh. Fiz. Khimii 46, 3030 (1972).

    Google Scholar 

  21. A. B. Nalbandyan and A. A. Mantashyan, Elementary Processes in Slow Gas-Phase Reactions (Izd. Akad. Nauk Arm. SSR, Erevan, 1975) [in Russian].

    Google Scholar 

  22. P. S. Gukasyan, A. A. Mantashyan, and R. A. Sayadyan, “Detection of High Concentrations of Radicals in the Zone of the Cold Flame in the Reaction of the Oxidation of Propane,” Fiz. Goreniya Vzryva 12 (5), 789–792 (1976) [Combust., Explos., ShockWaves 12 (5), 706–708 (1976)].

    Google Scholar 

  23. A. A. Mantashyan and P. S. Gukasyan, “Temperature Dependence of the Radical Concentration in Reactions of Cool Flame Oxidation of Propane,” Dokl. Akad. Nauk SSSR 234 (2), 379–382 (1977).

    Google Scholar 

  24. A. A. Mantashyan, P. S. Gookasyan, and R. H. Sayadyan, “Mechanism of Cool Flame Propane Oxidation,” React. Kinet. Catal. Lett. 11 (3), 225–228 (1979).

    Article  Google Scholar 

  25. A. A. Mantashyan, “Cool Flame and Oscillations in Hydrocarbon Oxidation,” in Twenty Fifth Symposium (Int.) on Combustion (Combust. Inst., Pittsburgh, 1994), pp. 927–932.

    Google Scholar 

  26. T. R. Simonyan and A. A. Mantashyan, “Investigation of Heat-Ups with the Cold-Flame Oxidation of Butane,” Fiz. Goreniya Vzryva 15 (2), 165–166 (1979) [Combust., Explos., Shock Waves 15 (2), 257–258 (1979)].

    Google Scholar 

  27. T. R. Simonyan and A. A. Mantashyan, “ESR Studies on Stabilized Cool Flame of Propilene,” React. Kinet. Catal. Lett. 17 (3/4), 319–322 (1981).

    Article  Google Scholar 

  28. N. N. Semenov, On Some Problems of Chemical Kinetics and Reactivity (Izd. Akad. Nauk SSSR, Moscow, 1958) [in Russian].

    Google Scholar 

  29. A. A. Mantashyan, G. L. Grigoryan, A. S. Saakyan, and A. B. Nalbandyan, “Negative Temperature Coefficient of the Propane Oxidation Reaction Rate,” Dokl. Akad. Nauk SSSR 204 (6), 1392–1394 (1972).

    Google Scholar 

  30. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., “Evaluated Kinetic Data for Combustion Modeling Supplement I,” J. Phys. Chem. Ref. Data 23, 847 (1994).

    Article  ADS  Google Scholar 

  31. B. H. Bonner and C. F. H. Tipper, “Cool-Flame Combustion of Hydrocarbons,” in Tenth Symposium (Int.) on Combustion (Combust. Inst., Pittsburgh, 1965), pp. 145–150.

    Google Scholar 

  32. A. A. Mantashyan and Sh. E. Shaginyan, “Cool Flame Oxidation of Cyclohexane. Parametric Characteristics,” Khim. Zh. Armenii 60 (4), 843–852 (2007).

    Google Scholar 

  33. A. A. Mantashan and S. E. Shaginyan, “Phenomenological Characteristics of Cool-Flame Oxidation of Cyclohexane,” Fiz. Goreniya Vzryva 44 (1), 26–28 (2008) [Combust., Explos., Shock Waves 44 (1), 22–24 (2008)].

    Google Scholar 

  34. A. A. Mantashyan and Sh. E. Shaginyan, “Temperature Dependence of Flammability Limits in Terms of Pressure and Induction Period of Cool Flames of Cyclohexane,” Khim. Zh. Armenii 60 (5), 906–912 (2007).

    Google Scholar 

  35. Sh. E. Shaginyan and A. A. Mantashyan, “Kinetic Specific Features of Cool Flame Oxidation of Cyclohexane,” Khim. Zh. Armenii 61 (2), 167–178 (2008).

    Google Scholar 

  36. Sh. E. Shaginyan, “Effect of Acetaldehyde and Propionic Aldehyde on Cool Flames of Cyclohexane,” Khim. Zh. Armenii 61 (2), 145–152 (2008).

    Google Scholar 

  37. S. G. Bernatosyan and A. A. Mantashyan, “Oscillatory Oxidation of Propane in a Flow-Type Reactor,” Arm. Khim. Zh. 36 (1), 34–40 (1983).

    Google Scholar 

  38. A. A. Mantashyan, S. G. Bernatosyan, and T. R. Simonyan, “Cool Flame Oscillations in Hydrocarbon Oxidation,” Oxidation Commun. 5 (1/2), 207–223 (1983).

    Google Scholar 

  39. A. A. Mantashyan, “Adjoint Processes of Chemical Conversion of Sulphur Dioxide under the Action of Gas-Phase Chain Reactions,” Zh. Fiz. Khim. 89 (1), 43–49 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mantashyan.

Additional information

Original Russian Text © A.A. Mantashyan.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 2, pp. 3–17, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantashyan, A.A. Kinetic manifestations of low-temperature combustion of hydrocarbons and hydrogen: Cool and intermittent flames. Combust Explos Shock Waves 52, 125–138 (2016). https://doi.org/10.1134/S0010508216020015

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216020015

Keywords

Navigation