Skip to main content
Log in

Electrical resistance of high-pressure phases of tin under shock compression

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The normalized electrical resistance R/R 0 of tin for different pressures of shock compression p is measured. The resultant dependence R/R 0(p) differs significantly from the known dependences for static and quasi-isentropic compression and demonstrates the growth of the electrical resistance with increasing pressure. The dependence has an inflection testifying to a phase transition. The inflection corresponds to pressures of 4.7–5.3 GPa in the dielectric embracing a thin sample and to pressures of 8.4–9.6 GPa in the first shock wave. The latter parameters qualitatively agree with the characteristics of the phase transition β-Sn → γ-Sn. The first shock wave in tin determines the final electrical resistance of the sample after wave reverberation. The experimental data obtained in this study are indicative of the kinetic behavior of the electrical resistance in the transition β-Sn → γ-Sn, which is accompanied by generation of crystalline structure defects with a characteristic time greater than 1 μs. A drastic increase in the electrical resistance of the sample in the expansion wave is observed. This increase is attributed to tin melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Bridgmen, “The Resistance of 72 Elements, Alloys and Compounds to 100 000 kg/cm3,” Proc. Amer. Acad. Arts Sci. 81 (4), 165–251 (1952).

    Article  Google Scholar 

  2. R. A. Stager, A. S. Balchan, and H. G. Drikamer, “High Pressure Phase Transition in Metallic Tin,” J. Chem. Phys. 37 (3), 1154–1163 (1962).

    Article  ADS  Google Scholar 

  3. F. Vnuk, A. Monte, and R. W. de Smith, “The Effect of Pressure on the Semiconductor-to-Metal Transition Temperature in Tin and in Dilute Sn–Ge Alloys,” J. Appl. Phys. 55, 4171 (1984); http://dx.doi.org/10.1063/1.333035.

    Article  ADS  Google Scholar 

  4. M. Liu and L. Liu, “Compression and Phase Transitions of Tin to Half a Megabar,” High Temp.–High Press. 18, 79–85 (1986).

    Google Scholar 

  5. V. I. Postnov, S. S. Nabatov, A. A. Shcherban’, and V. V. Yakushev, “Detection of Phase Transitions in Bi, Yb, and Sn under Isentropic Compression in Dynamic Experiments,” in Proc. 4th All-Union Workshop on Detonation (Chernogolovka, 1988), Vol. 1, pp. 70–75.

    Google Scholar 

  6. S. Disgreniers, Y. K. Vohra, and A. L. Ruoff, “Tin of High Pressures: the Energy-Dispersive X-ray Diffraction Study to 120 GPa,” Phys. Rev. B 39, 10359–10361 (1989).

    Article  ADS  Google Scholar 

  7. M. N. Pavlovskii and V. V. Komissarov, “Polymorphic Transformations of Tin in Compression and Expansion Shock Waves,” Zh. Eksp. Teor. Fiz. 98 (5(11)), 1748–1751 (1990).

    Google Scholar 

  8. J. L. Corkill, A. Garca, and M. L. Cohen, “Theoretical Study of High-Pressure Phases of Tin,” Phys. Rev. B 43, 9251–9254 (1991).

    Article  ADS  Google Scholar 

  9. B. H. Cheong and K. J. Chang, “First-Principles Study of the Structural Properties of Sn under Pressure,” Phys. Rev. B 44 (9), 4103–4108 (1991).

    Article  ADS  Google Scholar 

  10. S. P. Lewis and L. M. Cohen, “Theoretical Study of Raman Modes in High-Pressure Phases of Si, Ge, and Sn,” Phys. Rev. B 48 (6), 3646–3653 (1993).

    Article  ADS  Google Scholar 

  11. A. P. Rybakov, “Spall Damage in Low-Melting Metals,” Latv. J. Phys. Techn. Sci., No. 3, 12–22 (1994).

    Google Scholar 

  12. R. S. Osipov, A. I. Funtikov, and V. A. Tsyganov, “Determination of Thermodynamic Parameter of Shock Compression of Lead, Tin, Copper, and Nickel Based on their Melting in Recovery Ampoules,” Teplofiz. Vysok. Temp. 36 (4), 590–595 (1998).

    Google Scholar 

  13. A. M. Molodets, M. A. Molodets, and S. S. Nabatov, “Isochoric–Isothermal Potential of Melted Metals,” Teplofiz. Vys. Temp. 36 (6), 914–920 (1998).

    Google Scholar 

  14. A. M. Molodets and S. S. Nabatov, “Thermodynamic Potentials, Diagram of State, and Phase Transitions of Tin under Shock Compression,” Teplofiz. Vys. Temp. 38 (5), 741–747 (2000).

    Google Scholar 

  15. A. M. Molodets, “Inflections on Shock Adiabats of ß-Sn and ?-Sn,” Teplofiz. Vys. Temp. 40 (3), 1–4 (2002).

    Google Scholar 

  16. H. Katzke, U. Bismayer, and P. Tolédano, “Theory of the High-Pressure Structural Phase Transitions in Si, Ge, Sn, and Pb,” Phys. Rev. B 73, 134105 (2006).

    Article  ADS  Google Scholar 

  17. J. Hu, X. Zhou, H. Tan, J. Li, and C. Dai, “Successive Phase Transitions of Tin under Shock Compression,” Appl. Phys. Lett. 92, 111905 (2008); http://dx.doi.org/10.1063/1.2898891.

    Article  ADS  Google Scholar 

  18. J. Hu, X. Zhou, C. Dai, H. Tan, and J. Li, “Shock-Induced BCT-BCC Transition and Melting of Tin Identified by Sound Velocity Measurements,” J. Appl. Phys. 104, 083520 (2008); http://dx.doi.org/10.1063/1.3003325.

    Article  ADS  Google Scholar 

  19. M. V. Zhernokletov, A. E. Kovalev, V. V. Komissarov, M. G. Novikov, M. A. Socher, and F. J. Cherne, “Measurement of the Sound Velocities behind the Shock Wave Front in Tin,” Fiz. Goreniya Vzryva 48 (1), 123–129 (2012)

    Google Scholar 

  20. M. V. Zhernokletov, A. E. Kovalev, V. V. Komissarov, M. G. Novikov, M. A. Socher, and F. J. Cherne, Combust., Expl., Shock Waves 48 (1), 112–118 (2012).

    Article  Google Scholar 

  21. E. Yu. Tonkov, Phase Diagrams of Elements at High Pressures (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. S. D. Gilev, “Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review),” Fiz. Goreniya Vzryva 47 (4), 3–23 (2011)

    Google Scholar 

  23. S. D. Gilev, Combust., Expl., Shock Waves 47 (4), 375–393 (2011).

    Article  Google Scholar 

  24. I. K. Kikoin, Tables of Physical Variables: Reference Book, (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  25. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].

    Google Scholar 

  26. V. A. Borisenok, A. M. Molodets, and E. Z. Novitskii “Electrical Phenomena in Shock Waves,” (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2005) [in Russian].

    Google Scholar 

  27. R. G. MaQueen, S. P. Marsh, J. W. Taylor, et al., “The Equation of State of Solids from Shock Wave Studies,” in High-Velocity Impact Phenomena, Ed. by R. Kinslow (Academic Press, 1970, pp. 294–416).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

Original Russian Text © S.D. Gilev, V.S. Prokop’ev.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 94–100, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, S.D., Prokop’ev, V.S. Electrical resistance of high-pressure phases of tin under shock compression. Combust Explos Shock Waves 51, 482–487 (2015). https://doi.org/10.1134/S0010508215040139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040139

Keywords

Navigation