Abstract
The normalized electrical resistance R/R 0 of tin for different pressures of shock compression p is measured. The resultant dependence R/R 0(p) differs significantly from the known dependences for static and quasi-isentropic compression and demonstrates the growth of the electrical resistance with increasing pressure. The dependence has an inflection testifying to a phase transition. The inflection corresponds to pressures of 4.7–5.3 GPa in the dielectric embracing a thin sample and to pressures of 8.4–9.6 GPa in the first shock wave. The latter parameters qualitatively agree with the characteristics of the phase transition β-Sn → γ-Sn. The first shock wave in tin determines the final electrical resistance of the sample after wave reverberation. The experimental data obtained in this study are indicative of the kinetic behavior of the electrical resistance in the transition β-Sn → γ-Sn, which is accompanied by generation of crystalline structure defects with a characteristic time greater than 1 μs. A drastic increase in the electrical resistance of the sample in the expansion wave is observed. This increase is attributed to tin melting.
Similar content being viewed by others
References
P. W. Bridgmen, “The Resistance of 72 Elements, Alloys and Compounds to 100 000 kg/cm3,” Proc. Amer. Acad. Arts Sci. 81 (4), 165–251 (1952).
R. A. Stager, A. S. Balchan, and H. G. Drikamer, “High Pressure Phase Transition in Metallic Tin,” J. Chem. Phys. 37 (3), 1154–1163 (1962).
F. Vnuk, A. Monte, and R. W. de Smith, “The Effect of Pressure on the Semiconductor-to-Metal Transition Temperature in Tin and in Dilute Sn–Ge Alloys,” J. Appl. Phys. 55, 4171 (1984); http://dx.doi.org/10.1063/1.333035.
M. Liu and L. Liu, “Compression and Phase Transitions of Tin to Half a Megabar,” High Temp.–High Press. 18, 79–85 (1986).
V. I. Postnov, S. S. Nabatov, A. A. Shcherban’, and V. V. Yakushev, “Detection of Phase Transitions in Bi, Yb, and Sn under Isentropic Compression in Dynamic Experiments,” in Proc. 4th All-Union Workshop on Detonation (Chernogolovka, 1988), Vol. 1, pp. 70–75.
S. Disgreniers, Y. K. Vohra, and A. L. Ruoff, “Tin of High Pressures: the Energy-Dispersive X-ray Diffraction Study to 120 GPa,” Phys. Rev. B 39, 10359–10361 (1989).
M. N. Pavlovskii and V. V. Komissarov, “Polymorphic Transformations of Tin in Compression and Expansion Shock Waves,” Zh. Eksp. Teor. Fiz. 98 (5(11)), 1748–1751 (1990).
J. L. Corkill, A. Garca, and M. L. Cohen, “Theoretical Study of High-Pressure Phases of Tin,” Phys. Rev. B 43, 9251–9254 (1991).
B. H. Cheong and K. J. Chang, “First-Principles Study of the Structural Properties of Sn under Pressure,” Phys. Rev. B 44 (9), 4103–4108 (1991).
S. P. Lewis and L. M. Cohen, “Theoretical Study of Raman Modes in High-Pressure Phases of Si, Ge, and Sn,” Phys. Rev. B 48 (6), 3646–3653 (1993).
A. P. Rybakov, “Spall Damage in Low-Melting Metals,” Latv. J. Phys. Techn. Sci., No. 3, 12–22 (1994).
R. S. Osipov, A. I. Funtikov, and V. A. Tsyganov, “Determination of Thermodynamic Parameter of Shock Compression of Lead, Tin, Copper, and Nickel Based on their Melting in Recovery Ampoules,” Teplofiz. Vysok. Temp. 36 (4), 590–595 (1998).
A. M. Molodets, M. A. Molodets, and S. S. Nabatov, “Isochoric–Isothermal Potential of Melted Metals,” Teplofiz. Vys. Temp. 36 (6), 914–920 (1998).
A. M. Molodets and S. S. Nabatov, “Thermodynamic Potentials, Diagram of State, and Phase Transitions of Tin under Shock Compression,” Teplofiz. Vys. Temp. 38 (5), 741–747 (2000).
A. M. Molodets, “Inflections on Shock Adiabats of ß-Sn and ?-Sn,” Teplofiz. Vys. Temp. 40 (3), 1–4 (2002).
H. Katzke, U. Bismayer, and P. Tolédano, “Theory of the High-Pressure Structural Phase Transitions in Si, Ge, Sn, and Pb,” Phys. Rev. B 73, 134105 (2006).
J. Hu, X. Zhou, H. Tan, J. Li, and C. Dai, “Successive Phase Transitions of Tin under Shock Compression,” Appl. Phys. Lett. 92, 111905 (2008); http://dx.doi.org/10.1063/1.2898891.
J. Hu, X. Zhou, C. Dai, H. Tan, and J. Li, “Shock-Induced BCT-BCC Transition and Melting of Tin Identified by Sound Velocity Measurements,” J. Appl. Phys. 104, 083520 (2008); http://dx.doi.org/10.1063/1.3003325.
M. V. Zhernokletov, A. E. Kovalev, V. V. Komissarov, M. G. Novikov, M. A. Socher, and F. J. Cherne, “Measurement of the Sound Velocities behind the Shock Wave Front in Tin,” Fiz. Goreniya Vzryva 48 (1), 123–129 (2012)
M. V. Zhernokletov, A. E. Kovalev, V. V. Komissarov, M. G. Novikov, M. A. Socher, and F. J. Cherne, Combust., Expl., Shock Waves 48 (1), 112–118 (2012).
E. Yu. Tonkov, Phase Diagrams of Elements at High Pressures (Nauka, Moscow, 1979) [in Russian].
S. D. Gilev, “Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review),” Fiz. Goreniya Vzryva 47 (4), 3–23 (2011)
S. D. Gilev, Combust., Expl., Shock Waves 47 (4), 375–393 (2011).
I. K. Kikoin, Tables of Physical Variables: Reference Book, (Atomizdat, Moscow, 1976) [in Russian].
R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].
V. A. Borisenok, A. M. Molodets, and E. Z. Novitskii “Electrical Phenomena in Shock Waves,” (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2005) [in Russian].
R. G. MaQueen, S. P. Marsh, J. W. Taylor, et al., “The Equation of State of Solids from Shock Wave Studies,” in High-Velocity Impact Phenomena, Ed. by R. Kinslow (Academic Press, 1970, pp. 294–416).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.D. Gilev, V.S. Prokop’ev.
Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 94–100, July–August, 2015.
Rights and permissions
About this article
Cite this article
Gilev, S.D., Prokop’ev, V.S. Electrical resistance of high-pressure phases of tin under shock compression. Combust Explos Shock Waves 51, 482–487 (2015). https://doi.org/10.1134/S0010508215040139
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0010508215040139