Skip to main content
Log in

Combustion of TiAl alloy in nitrogen

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

It has been shown that Ti–Al–N ternary compounds, belonging to MAX phases (ceramic materials that can be processed as metals) can be produced by combustion of a granular powder of T65Yu35 (TiAl) alloy in nitrogen flow at a pressure close to atmospheric pressure. Combustion is accompanied by transfer of part of the aluminum through the gas phase. The propagation velocity of the combustion zone and the maximum temperature increase with increasing flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Barsoum and T. El-Raghy, “The MAX Phases: Unique New Carbide and Nitride Materials,” Amer. Scient. 89 (4), 334–343 (2001).

    Article  ADS  Google Scholar 

  2. A. T. Procopio, M. W. Barsoum, and T. El-Raghy, “Characterization of Ti4AlN3,” Metallurg. Mater. Trans. A 31 (2), 333–337 (2000).

    Article  ADS  Google Scholar 

  3. A. T. Procopio, T. El-Raghy, and M. W. Barsoum, “Synthesis of Ti4AlN3 and Phase Equilibria in the Ti–Al–N System,” Metallurg. Mater. Trans. A 31 (2), 373–378 (2000).

    Article  ADS  Google Scholar 

  4. Ming Yan, Bingchu Mei, Jiaoqun Zhu, Chenguang Tian, and Ping Wang, “Synthesis of High-Purity Bulk Ti2AlN by Spark Plasma Sintering (SPS),” Ceram. Int. 34, 1439–1442 (2008).

    Article  Google Scholar 

  5. Ming Yan, Yan-lin Chen, Bing-chu Mei, and Jiao-qun Zhu, “Synthesis of High-Purity Ti2AlN Ceramic by Hot Pressing,” Trans. Nonferrous Metals Soc. China 18, 82–85 (2008).

    Article  Google Scholar 

  6. Z. J. Lin, M. J. Zhuo, M. S. Li, J. Y. Wang, and Y. C. Zhou, “Synthesis and Microstructure of Layered- Ternary Ti2AlN Ceramic,” Scripta Mater. 56, 1115–1118 (2007).

    Article  Google Scholar 

  7. H. Mabuchi, H. Tsuda, Y. Nakayama, and E. Sukedai, “Processing of TiAl–Ti2AlN Composites and Their Compressive Properties,” J. Mater. Res. 7, 894–900 (1992).

    Article  ADS  Google Scholar 

  8. A. A. Kondakov and V. V. Grachev, “Combustion Modes of Ternary System Titanium–Aluminum–Nitrogen,” in Book of Abstracts of XII Int. Symp. on Self-Propagating High-Temperature Synthesis, South Padre Island, Oct. 2013, pp. 27–28.

  9. L. Chlubny, J. Lis, and M. M. Bucko, “Influence of Precursors Stoichiometry on SHS Synthesis of Powders of Multilayered Materials in the Ti–Al–C–N System,” in Book of Abstracts of XII Int. Symp. on Self- Propagating High-Temperature Synthesis, South Padre Island, Oct. 2013, pp. 201–202.

  10. A. A. Kondakov and V. V. Grachev, “Filtration Combustion Modes of the Titanium–Aluminum–Nitrogen System,” in Proc. of the Third Conf. on Filtration Combustion, Chernogolovka, 18–21 June, 2013, pp. 35–38.

  11. J. Lis, L. Chlubny, M. Łopacinski, L. Stobierski, and M. Bucko, “Ceramic Nanolaminates—Processing and Application,” J. Europ. Ceram. Soc. 28 (5), 1009–1014 (2008).

    Article  Google Scholar 

  12. K. Y. Wang, “Thermal Behaviours of Mechanically Alloyed Ti50Al50 in a Nitrogen Atmosphere,” J. Mater. Sci. 30, 5427–5432 (1995).

    Article  ADS  Google Scholar 

  13. S. A. Firstov, V. P. Gorban, I. I. Ivanova, and E. P. Pechkovskii, “Mechanical Properties of Ti3SiC2/TiC, Ti3AlC2/TiC and Ti4AlN3/TiN Porous Composite Nanolaminates in the Temperature Range of 20–1300°C,” Poroshk. Metallurgiya, No. 7/8, 56–68 (2010).

    Google Scholar 

  14. Zhou Yi, Sun ong-Li, Jiang De-Peng, Han Xiu-Li, Qing Wang, and Wu Gao-Hui, “Microstructural Characteristics and Evolution of Ti2AlN/TiAl Composites with a Network Reinforcement Architecture during Reaction Hot Pressing Process,” Mater. Characterization 80, 28–35 (2013).

    Article  Google Scholar 

  15. J. Magnan, G. C. Weatherly, and M.-C. Cheynet, “The Nitriding Behavior of Ti–Al Alloys at 1000 °C,” Metallurg. Mater. Trans. A 30 (1), 19–29 (1999).

    Article  Google Scholar 

  16. A. P. Aldushin and A. G. Merzhanov, “Theory of Filtration Combustion: General Concepts and State of Research,” in Propagation of Heat Waves in Heterogeneous Media, Ed. by Yu. Sh. Matros (Nauka, Novosibirsk. 1988) [in Russian].

    Google Scholar 

  17. B. S. Seplyarskii, A. G. Tarasov, and P. A. Kochetkov, “Experimental Investigation of Combustion of a Gasless Pelletized Mixture of Ti + 0.5C in Argon and Nitrogen Coflows,” Fiz. Goreniya Vzryva 49 (5), 55–63 (2013)

    Google Scholar 

  18. B. S. Seplyarskii, A. G. Tarasov, and P. A. Kochetkov, Combust., Expl., Shock Waves 49 (5), 555–562 (2013).

    Article  Google Scholar 

  19. B. Sh. Braverman, Yu. M. Maksimov, and Yu. V. Tsybulnik, “Possibility of Nitriding Industrial Ferroalloys in a Nitrogen-Containing Gas Flow,” Fiz. Goreniya Vzryva 48 (6), 87–88 (2012)

    Google Scholar 

  20. B. Sh. Braverman, Yu. M. Maksimov, and Yu. V. Tsybulnik, Combust., Expl., Shock Waves 48 (6), 734–735 (2012).

    Article  Google Scholar 

  21. B. Sh. Braverman and Yu. V. Tsybulnik, “Combustion of Chromium–Aluminum Alloys in Nitrogen,” in Proc. VII All-Russian Sci. Conf., Tomsk, 2011, pp. 74–75.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sh. Braverman.

Additional information

Original Russian Text © B.Sh. Braverman, O.K. Lepakova, Yu.M. Maksimov, Yu.V. Tsybul’nik, V.D. Kitler.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 66–71, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braverman, B.S., Lepakova, O.K., Maksimov, Y.M. et al. Combustion of TiAl alloy in nitrogen. Combust Explos Shock Waves 51, 457–461 (2015). https://doi.org/10.1134/S0010508215040085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040085

Keywords

Navigation