Skip to main content
Log in

Firmation of condensed combustion products in dust flames of metals: Coagulation stage

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The coagulation dynamics of condensed products of vapor-phase or gas-phase combustion of gas mixtures of microdispersed metal particles in dust laminar flame considered taking into account the ionization of the combustion zone due to additives of electronegative and electropositive atoms and due to thermionic emission. The influence of the degree of ionization of a monodisperse coagulating aerosol and the charge of the particles on the coagulation rate constant is studied. It is shown that the rate of coagulation of the aerosol is most significantly affected by the Coulomb interaction of like-charged condensed-phase particles, which, under certain conditions, leads to an early stop of this stage in the condensation of combustion products. Ionization of the coagulating particles gives rise to a dependence of the size of primary particles of combustion products on the environmental parameters affecting their electric charge, and can be used for targeted control of the degree of dispersion of the combustion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Lushnikov and A. G. Sutugin, “The Present State of the Theory of Homogeneous Nucleation,” Usp. Khim. 45 (3), 385–415 (1976).

    Article  Google Scholar 

  2. N. I. Poletaev, “Formation of Condensed Combustion Products in Metal Dust Flames: Nucleation Stage,” Fiz. Goreniya Vzryva 51 (3), 19–33 (2015)

    Google Scholar 

  3. N. I. Poletaev, Combust., Expl., Shock Waves 51 (3), 299–312 (2015).

    Article  Google Scholar 

  4. G. D. Ulrich, “Theory of Particle Formation and Growth in Oxide Synthesis Flames,” Combust. Sci. Technol. 4, 47–57 (1971).

    Article  ADS  Google Scholar 

  5. C. Cozzy and D. Cadorin, “Nucleation, Growth and Coagulation of Solid Particles in Flames,” Combust. Sci. Technol. 5, 213–218 (1972).

    Article  Google Scholar 

  6. Ya. Xingand, D. Rosner “Predictiof Spherule Size in Gas Phase Naparticles Synthesis”J. Naparticles Res.1277–291 (1999)

    Article  Google Scholar 

  7. B. S. Haynes, H. Jander, and H. G. Wagner, “The Effect ofMetal Additives on the Formation of Soot in Premixed Flames,” in Seventeenth Symp. (Int.) on Combustion (Leeds, England, 1978), pp. 1365–1374.

    Google Scholar 

  8. J. J. Helble, “Combustion Aerosol Synthesis of Nanoscale Ceramic Powder,” J. Aerosol Sci. 29 (5/6), 721–736 (1998).

    Article  Google Scholar 

  9. H. K. Kammler, L. Madler, and S. E. Pratsinis, “Flame Synthesis of Nanoparticles,” Chem. Eng. Technol. 24 (6), 583–596 (2001).

    Article  Google Scholar 

  10. S. E. Pratsinis, “History of Manufacture of Fine Particles in High-Temperature Aerosol Reactors,” in Aerosol Science and Technology: History and Reviews, Ed. by D. S. Ensor (RTI Press, 2011), pp. 475–507.

    Google Scholar 

  11. N. I. Poletaev and A. V. Florko, “Spectral Studies of the Gas Component of an Aluminum Dust Flame,” Fiz. Goreniya Vzryva 44 (4), 72–79 (2008)

    Google Scholar 

  12. N. I. Poletaev and A. V. Florko, Combust., Expl., Shock Waves 44 (4), 437–443 (2008).

    Article  Google Scholar 

  13. N. I. Poletayev, A. N. Zolotko, A. V. Florko, and J. I. Vovchuk, “Combustion Synthesis and Investigation of Metal Oxide Nanopowders Properties,” Chemie Ingenieur Technik. 73 (6), 711 (2001).

    Article  Google Scholar 

  14. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  15. A. N. Zolotko, N. I. Poletaev, and Ya. I. Vovchuk, “Gas-Disperse Synthesis of Metal Oxide Particles,” Fiz. Goreniya Vzryva 51 (2), 125–143 (2015)

    Google Scholar 

  16. A. N. Zolotko, N. I. Poletaev, and Ya. I. Vovchuk, Combust., Expl., Shock Waves 51 (2), 252–268 (2015).

    Article  Google Scholar 

  17. N. I. Poletaev, A. N. Zolotko, and Yu. A. Doroshenko, “Degree of Dispersion of Metal Combustion Products in a Laminar Dust Flame,” Fiz. Goreniya Vzryva 47 (2), 30–44 (2011)

    Google Scholar 

  18. N. I. Poletaev, A. N. Zolotko, and Yu. A. Doroshenko, Combust., Expl., Shock Waves 47 (2), 153–165 (2011).

    Article  Google Scholar 

  19. M. V. Smoluchowski, “Drei Vortr¨age¨uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen,” Physik. Z. 17, 557–585 (1916).

    Google Scholar 

  20. N. A. Fuks, Mechanics of Aerozols (Izd. Akad. Nauk SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  21. B. M. Smirnov, “Cluster Plasma,” Usp. Fiz. Nauk 170 (5), 495–534 (2000).

    Article  Google Scholar 

  22. B. M. Smirnov, “Processes in Plasma and Gases Involving Clusters,” Usp. Fiz. Nauk 167 (11), 1169–1200 (1997).

    Article  Google Scholar 

  23. S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (Wiley-Interscience, New York, 1977).

    Google Scholar 

  24. A. E. Sidorov and V. G. Shevchuk, “Laminar Flame Fine-Particle Dusts,” Fiz. Goreniya Vzryva 47 (5), 24–28 (2011)

    Google Scholar 

  25. A. E. Sidorov and V. G. Shevchuk, Combust., Expl., Shock Waves 47 (5), 518–522 (2011).

    Article  Google Scholar 

  26. N. I. Poletaev and A. V. Florko, “Radiative Characteristics of an Aluminum Dust Flame. Condensed Phase,” Fiz. Goreniya Vzryva 43 (4), 49–58 (2007)

    Google Scholar 

  27. N. I. Poletaev and A. V. Florko, Combust., Expl., Shock Waves 43 (4), 414–422 (2007).

    Article  Google Scholar 

  28. A. A. Arshinov and A. K. Musin, “Equilibrium Ionization in Dispersed Systems,” Radiotekhnika Elektronika, No. 5, 890–899 (1962).

    Google Scholar 

  29. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, “Mechanisms of Coagulation and Growth of Dust Particles in Low-Temperature Plasma,” Zh. Eksp. Teor. Fiz. 125 (2), 324–344 (2004).

    Google Scholar 

  30. H. Einbinder, “Generalized Equations for the Ionization of Solid Particles,” J. Chem. Phys. 26 (4), 948 (1957).

    Article  ADS  Google Scholar 

  31. J. A. Doroshenko, N. I. Poletaev, and V. I. Vishnyakov, “Dispersion of Dust Zizes in the Plasma of Aluminum Dust Flame,” Phys. Plasmas 16 (9), 094504 (2009).

    Article  ADS  Google Scholar 

  32. N. I. Poletaev and Yu. A. Doroshenko, “Effect of Addition of Potassium Carbonate to Aluminum Powder on the Grain Size of Al2O3 Nanoparticles Formed in the Laminar Dusty Flame,” Fiz. Goreniya Vzryva 49 (1), 31–44 (2013)

    Google Scholar 

  33. N. I. Poletaev and Yu. A. Doroshenko, Combust., Expl., Shock Waves 49 (1), 26–37 (2013).

    Article  Google Scholar 

  34. N. I. Poletaev, A. N. Zolotko, Y. A. Doroshenko, and M. E. Khlebnikova, “Growth of Al2O3 Particles in a Complex Plasma of Combustion of Aluminum Dust Flame,” in Dusty Plasmas in Applications, Proc. of the 4th Int. Conf., Odessa, Ukraine, 25–29 August, 2013, pp. 96–101.

  35. E. I. Gusachenko, L. N. Stesik, V. P. Fursov, and V. I. Shevtsov, “Investigation of the Condensed Combustion Products of Magnesium Powders. II. Dependence on Particle Size,” Fiz. Goreniya Vzryva 10 (5), 669–676 (1974)

    Google Scholar 

  36. E. I. Gusachenko, L. N. Stesik, V. P. Fursov, and V. I. Shevtsov, Combust., Expl., Shock Waves 10 (5), 588–595 (1974).

    Article  Google Scholar 

  37. V. V. Karasev, A. A. Onischuk, S. A. Khromova, O. G. Glotov, V. E. Zarko, E. A. Pilyugina, and C. C. Tsai, “Formation of Metal Oxide Nanoparticles in Combustion of Titanium and Aluminum Droplets,” Fiz. Goreniya Vzryva 42 (6), 33–47 (2006)

    Google Scholar 

  38. V. V. Karasev, A. A. Onischuk, S. A. Khromova, O. G. Glotov, V. E. Zarko, E. A. Pilyugina, and C. C. Tsai, Combust., Expl., Shock Waves 42 (6), 649–662 (2006).

    Article  Google Scholar 

  39. O. G. Glotov, A. A. Onishchuk, and V. B. Karasev, “The Size and Morphology of the Nanooxide Aerosol Produced by Combustion of an Aluminum Particle,” Dokl. Akad. Nauk 412 (2), 206–209 (2007).

    Google Scholar 

  40. D. A. Yagodnikov and E. I. Gusachenko, “Experimental Study of the Disperse Composition of Condensed Products of Aluminum Particle Combustion in Air,” Fiz. Goreniya Vzryva 40 (2), 33–41 (2004)

    Google Scholar 

  41. D. A. Yagodnikov and E. I. Gusachenko, Combust., Expl., Shock Waves 40 (2), 154–162 (2004).

    Article  Google Scholar 

  42. E. I. Gusachenko, L. N. Stesik, V. P. Fursov, and V. I. Shevtsov, “Investigation of the Condensed Combustion Products of Magnesium Powders I. Dependence on Pressure,” Fiz. Goreniya Vzryva 10 (4), 548–553 (1974)

    Google Scholar 

  43. E. I. Gusachenko, L. N. Stesik, V. P. Fursov, and V. I. Shevtsov, Combust., Expl., Shock Waves 10 (4), 476–482 (1974).

    Article  Google Scholar 

  44. M. W. Beckstead, “Analysis of the Data from Time to Time Combustion Aluminum Particles,” Fiz. Goreniya Vzryva 41 (5), 55–69 (2005)

    Google Scholar 

  45. M. W. Beckstead, Combust., Expl., Shock Waves 41 (5), 533–546 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Poletaev.

Additional information

Original Russian Text © N.I. Poletaev.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 51–65, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, N.I. Firmation of condensed combustion products in dust flames of metals: Coagulation stage. Combust Explos Shock Waves 51, 444–456 (2015). https://doi.org/10.1134/S0010508215040073

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040073

Keywords

Navigation