Combustion, Explosion, and Shock Waves

, Volume 51, Issue 3, pp 373–380 | Cite as

Interaction of a shock wave with a closed cell aluminum metal foam

  • M. D. GoelEmail author
  • Ph. Altenhofer
  • V. A. Matsagar
  • A. K. Gupta
  • Ch. Mundt
  • S. Marburg


The present investigation examines the interaction of shock waves with closed cell aluminum foam samples in a conventional shock tube. The effect of the sample thickness on shock wave attenuation and/or enhancement and the use of the foam in the sandwich structure is studied. Results in terms of incident and reflected shock pressures are obtained, and the effectiveness of the samples with and without the foam is compared. It is demonstrated that the foam density and thickness, as well as the placement of cover plates of the same material in front of and behind the foam have the most significant effect on the reflected shock pressure. It is concluded that the closed cell aluminum metal foam can be effectively used as a sacrificial layer in blast protection of structures.


blast loading metal foam shock tube shock wave shock-foam interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. C. Phan and J. L. Stollery, “On the Effects of Shock Wave Reflection in a Confined Space,” in Proc. 15th Int. Symp. Shock Waves Shock Tubes, Berkeley, California, USA, 1985, July 28–August 2, pp. 139–145.Google Scholar
  2. 2.
    B. W. Skews, A. Levy, and D. Levi-Hevroni, “Shock Wave Propagation in Porous Media,” in Handbook on Shock Waves, Ed. by G. Ben-Dor, O. Igra, and T. Elperin (Academic Press, Boston, 2000).Google Scholar
  3. 3.
    G. Ben-Dor, O. Igra, and T. Elperin, Handbook on Shock Waves (Academic Press, Boston, 2001).Google Scholar
  4. 4.
    R. Monti, “Normal Reflection on Deformable Walls,” Meccanica 5 (4), 285–296 (1970).CrossRefGoogle Scholar
  5. 5.
    A. A. Borisov, B. E. Gel’fand, V. M. Kudinov, B. I. Palamarchuk, V. V. Stepanov, E. I. Timofeev, and S. V. Khomik, “Shock Waves in Water Foams,” Acta Astronaut. 5 (11/12), 1027–1033 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    B. E. Gel’fand, A. V. Gubanov, and E. I. Timofeev, “Peculiarities of Shock-Wave Propagation in Foams,” Fiz. Goreniya Vzryva 17 (4), 129–136 (1981) [Combust., Expl., Shock Waves 17 (4), 464–469 (1981)].Google Scholar
  7. 7.
    L. G. Gvozdeva, Yu. M. Faresov, and V. P. Fokeev, “Interaction of Air Shock Waves with Porous Compressible Materials,” Prikl. Mekh. Tekh. Fiz. 26 (3), 111–115 (1985) [Appl.Mech. Tech. Phys. 26 (3), 401–404 (1985)].zbMATHGoogle Scholar
  8. 8.
    M. Yasuhara, K. Kitagawa, S. Sakashita, Y. Tsuzaki, and S. Watanabe, “One-Dimensional Shock Wave Interaction with Rubber and Low-Porosity Foam,” Shock Waves 5 (1/2), 25–32 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    K. Kitagawa, M. Yasuhara, and K. Takayama, “Attenuation of Shock Waves Propagating in Polyurethane Foams,” Shock Waves 15 (6), 437–445 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    W. Idczak, Cz. Rymarz, and A. Spychala, “Large Deflection of a Rigid Visco-Plastic Impulsively Loaded Circular Plate,” J. Tech. Phys. 21, 473–487 (1980).zbMATHGoogle Scholar
  11. 11.
    W. Idczak, Cz. Rymarz, and A. Spychala, “Studies on Shock Wave Loaded Clamped Circular Plates,” J. Tech. Phys. 22, 175–184 (1981).Google Scholar
  12. 12.
    J. Renard and O. Pennetier, “Nonlinear Dynamic Response of Plates Submitted to an Explosion-Numerical and Experimental Study,” in Structural Dynamics, Proc. 3th Eur. Conf. on Structural Dynamics: EURODYN’ 96 (Rotterdam, Netherlands, 1996), pp. 689–694.Google Scholar
  13. 13.
    S. A. Tekalur, A. Shukla, and K. Shivakumar, “Blast Resistance of Polyurea Based Layered Composite Materials,” Compos. Struct. 84 (3), 271–281 (2008).CrossRefGoogle Scholar
  14. 14.
    S. A. Tekalur, K. Shivakumar, and A. Shukla, “Mechanical Behavior and Damage Evolution in E-Glass Vinyl Ester and Carbon Composites Subjected to Static and Blast Loads,” Comp. B: Eng. 39 (1), 57–65 (2008).CrossRefGoogle Scholar
  15. 15.
    S. A. Tekalur, A. E. Bogdanovich, and A. Shukla, “Shock Loading Response of Sandwich Panels with 3-d Woven E-Glass Composite Skins and Stitched Foam Core,” Compos. Sci. Technol. 69 (6), 736–753 (2009).CrossRefGoogle Scholar
  16. 16.
    B. W. Skews, “The Reflected Pressure Field in the Interaction of Weak Shock Waves with a Compressible Foam,” Shock Waves 1 (3), 205–211 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    M. R. Baer, “A Numerical Study of Shock Wave Reflections on Low Density Foam,” Shock Waves 2 (2), 121–124 (1992).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    S. Ouellet, D. Frost, and A. Bouamoul, “Using a Shock Tube to Predict the Response of Polymeric Foam to a Blast Loading,” J. Phys. IV. France 134, 783–787 (2006).CrossRefGoogle Scholar
  19. 19.
    M. W. Seitz and B. W. Skews, “Effect of Compressible Foam Properties on Pressure Amplification during Shock Wave Impact,” Shock Waves 15 (3/4), 177–197 (2006).ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    E. Wang, N. Gardner, and A. Shukla, “The Blast Resistance of Sandwich Composites with Stepwise Graded Cores,” Int. J. Solids Struct. 46 (18/19), 3492–3502 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Bouamoul, “Using Finite Element Methods to Predict the Response of Polymeric Foams to Both Shock Tube and Free-Field Loadings,” in 25th Int. Symp. on Ballistics (Beijing, China, May 17–21, 2010).Google Scholar
  22. 22.
    D. P. Mondal, M. D. Goel, and S. Das, “Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Closed Cell Aluminum-Fly Ash Composite Foam,” Mater. Des. 30, 1268–1274 (2009).CrossRefGoogle Scholar
  23. 23.
    D. P. Mondal, M. D. Goel, and S. Das, “Compressive Deformation and Energy Absorption Characteristics of Closed Cell Aluminum-Fly Ash Particle Composite Foam,” Mater. Sci. Eng. 507 (1/2), 102–109 (2009).CrossRefGoogle Scholar
  24. 24.
    D. P. Mondal and S. Das, “Effect of Thickening Agent and Foaming Agent on the Micro-Architecture and Deformation Response of Closed Cell Aluminum Foam,” Mater. Werk. 41 (5), 276–282 (2010).CrossRefGoogle Scholar
  25. 25.
    P. Altenhöfer and C. Mundt, “Comparison of L1d-Simulations with Measurements on a Double- Diaphragm Shock Tube,” in 8th Eur. Fluid Mech. Conf., Bad Reichenhall, Germany, September 13–16, 2010.Google Scholar
  26. 26.
    P. D. Smith and J. G. Hetherington, Blast and Ballistic Loading of Structures (Butterworth-Heinemann Ltd., UK, 1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. D. Goel
    • 1
    Email author
  • Ph. Altenhofer
    • 2
  • V. A. Matsagar
    • 3
  • A. K. Gupta
    • 1
  • Ch. Mundt
    • 2
  • S. Marburg
    • 2
  1. 1.CSIR-Advanced Materials and Processes Research Institute (AMPRI)Council of Scientific and Industrial Research (CSIR)BhopalIndia
  2. 2.Institute of Thermodynamics, Department of Aerospace EngineeringUniversity of German Armed Forces MunichNeubibergGermany
  3. 3.Department of Civil EngineeringIndian Institute of Technology (IIT) DelhiNew DelhiIndia

Personalised recommendations