Combustion, Explosion, and Shock Waves

, Volume 51, Issue 3, pp 366–372 | Cite as

Evolution of electrical conductivity of emulsion explosives during their detonation conversion

  • N. P. SatonkinaEmail author
  • E. R. Pruuel
  • A. P. Ershov
  • V. V. Sil’vestrov
  • D. I. Karpov
  • A. V. Plastinin


Electrical conductivity of explosion products behind the detonation front of emulsion explosives is measured. The composition of the emulsion matrix and the amount of the additive consisting of sensitizing glass microspheres are varied. The peak value of electrical conductivity for the examined compositions is 0.5–0.05 Ω-1 · cm-1.


detonation emulsion explosive chemical reaction time chemical reaction zone electrical conductivity of explosion products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Bordzilovskii, S. M. Karakhanov, and V. V. Sil’vestrov, “Optical Radiation from Shock-Compressed Epoxy with Glass Microspheres,” Fiz. Goreniya Vzryva 50 (3), 105–112 (2014) [Comb., Expl., Shock Waves 50 (3), 339–345 (2014)].Google Scholar
  2. 2.
    V. V. Sil’vestrov, S. A. Bordzilovskii, and S. M. Karakhanov, “Temperature of the Detonation Front of an Emulsion Explosive,” Fiz. Goreniya Vzryva 51 (1), 135–142 (2015) [Combust., Expl., Shock Waves 51 (1), 116–123 (2015)].Google Scholar
  3. 3.
    L. V. Dubnov N. S. Bakharevich, and A. I. Romanov, Industrial High Explosives (Nedra, Moscow, 2009) [in Russian].Google Scholar
  4. 4.
    V. A. Sosnin and E. V. Kolganov, Industrial Emulsion Explosives (GosNII Kristal, Dzerzhinks, 2009, Vol. 1) [in Russian].Google Scholar
  5. 5.
    J. Lee and P. A. Persson, “Detonation Behavior of Emulsion Explosives,” Propel., Explos., Pyrotech., No. 15, 208–216 (1990).CrossRefGoogle Scholar
  6. 6.
    V. V. Sil’vestrov and A. V. Plastinin, “Investigation of Low Detonation Velocity Emulsion Explosives,” Fiz. Goreniya Vzryva 45 (5), 124–133 (2009) [Comb., Expl., Shock Waves 45 (5), 618–626 (2009)].Google Scholar
  7. 7.
    V. A. Sosnin and E. V. Kolganov, “Study of the Detonation Process in Industrial Emulsion Explosives,” Khim. Fiz. 22 (8), 100–107 (2003).Google Scholar
  8. 8.
    G. A. Leiper, I. J. Kirby, and A. Hackett, “Determination of Reaction Rates in Intermolecular Explosives Using the Electromagnetic Particle Velocity Gauge,” in Proc. Eight Symp. on Detonation (1985), pp. 187–195.Google Scholar
  9. 9.
    A. S. Yunoshev, A. V. Plastinin, and V. V. Sil’vestrov, “Effect of the Density of an Emulsion Explosive on the Reaction Zone Width,” Fiz. Goreniya Vzryva 48 (3), 79–88 (2012) [Combust., Expl., Shock Waves 48 (3), 319–327 (2012)].Google Scholar
  10. 10.
    V. V. Sil’vestrov, S. M. Karakhanov, A. V. Plastinin, and A. A. Deribas, “Effect of the Emulsion Explosive Density on the Reaction Zone Width,” in Proc. VII Khariton’s Topical Sci. Readings (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2005), pp. 132–137.Google Scholar
  11. 11.
    S. A. Kolesnikov, V. V. Lavrov, V. M. Molchanova, et al., “Experimental Study of the Structure of Detonation Waves in Emulsion Explosives,” in Lavrent’ev’s Readings on Mathematics, Mechanics, and Physics, Proc. Int. Conf. (Lavrent’ev Inst. Hydrodynamics, Novosibirsk, 2010), pp. 216–217.Google Scholar
  12. 12.
    A. P. Ershov, N. P. Satonkina, and G. M. Ivanov, “Reaction Zones and Conductive Zones in Dense Explosives,” in Proc. of 13th Int. Detonation Symp., Norfolk, VA, 2006, ONR 351-07-01, pp. 79–88.Google Scholar
  13. 13.
    A. P. Ershov, N. P. Satonkina, and G. M. Ivanov, “Profiles of Electrical Conductivity in Dense Explosives,” Khim. Fiz. 26 (12), 21–33 (2007).Google Scholar
  14. 14.
    V. M. Titov, E. R. Pruuel, K. A. Ten, et al., “Experience of Using Synchrotron Radiation for Studying Detonation Processes,” Fiz. Goreniya Vzryva 47 (6), 3–15 (2011) [Combust., Expl., Shock Waves 47 (6), 615–626 (2011)].Google Scholar
  15. 15.
    S. I. Rafeichik, “Investigation of the Critical Diameter of Emulsion Explosives as a Function of Density in a Steel Shell,” Vest. NGU, Ser. Fiz. 8 (6), 107–110 (2013).Google Scholar
  16. 16.
    A. C. Mitchell and W. J. Nellis, “Equation of State and Electrical Conductivity ofWater and Ammonia Shocked to the 100 GPa (1 Mbar) Pressure Range,” J. Chem. Phys. 76 (12), 6273–6281 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Orlov, “Effect of Temperature on Inelastic Deformation of LK-105 Glass in Shock Waves,” Candidate’s Dissertation in Physics and Mathematics (Moscow Inst. of Physics and Technology, Moscow, 1992).Google Scholar
  18. 18.
    N. P. Satonkina, E. R. Pruuel, A. P. Ershov, et al., “Electrical Conduction of Emulsion Explosives,” J. Eng. Thermophys. 20 (3), 315–319 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Yoshida, M. Iida, K. Tanaka, and S. Fudjiwara, “Detonation Behavior of Emulsion Explosives Containing Glass Microballoons,” in Proc. 8th Symp. (Int.) on Detonation (1985), pp. 993–1000.Google Scholar
  20. 20.
    V. V. Yakushev and A. N. Dremin, “Nature of Electrical Conductivity of Detonation Products of Condensed Explosives,” Dokl. Akad. Nauk SSSR 221 (5), 1143–1144 (1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. P. Satonkina
    • 1
    • 2
    Email author
  • E. R. Pruuel
    • 1
    • 2
  • A. P. Ershov
    • 1
    • 2
  • V. V. Sil’vestrov
    • 1
    • 2
  • D. I. Karpov
    • 1
    • 2
  • A. V. Plastinin
    • 1
  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations