Skip to main content
Log in

Molecular dynamics modeling melting of of aluminum nanoparticles of the embedded atom method

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Molecular dynamics modeling of melting of aluminum nanoparticles with the use of the DL POLY simulation package and two types of parametrization of the embedded atom potential is performed. Predicted melting temperatures are compared with available experimental and numerical data. A significant scatter of data (melting temperatures as functions of the nanoparticle size) is noted. The previously proposed semi-empirical model of molecular dynamics for the description of the thermal history of the aluminum nanoparticle is justified. The specific heats obtained in this study ensure a qualitatively correct description of their dependence on temperature and on the crystal rib size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Fedorov and A. V. Shulgin, “Complex Modeling of Melting of an Aluminum Nanoparticle,” Fiz. Goreniya Vzryva 49 (4), 68–75 (2013) [Combust., Expl., Shock Waves 49 (4), 442–449 (2013)].

    Google Scholar 

  2. F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: the Force-Matching Method,” Europhys. Lett. 26 (8), 583–588 (1994).

    Article  ADS  Google Scholar 

  3. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, 1991).

    Google Scholar 

  4. D. J. Evans and G. P. Morriss, “Non-Newtonian Molecular Dynamics,” Comput. Phys. Rep. 1 (5), 297–343 (1984).

    Article  ADS  Google Scholar 

  5. M. W. Finnis and J. E. Sinclair, “A Simple Empirical N-Body Potential for Transition Metals,” Philos. Mag. A 50 (1), 45–66 (1984).

    Article  ADS  Google Scholar 

  6. W. Smith and T. R. Forester, “DL POLY 2.0: A General-Purpose Parallel Molecular Dynamics Simulation Package,” J. Mol. Graphics 14, 136–141 (1996).

    Article  Google Scholar 

  7. F. Ercolessi, “A Molecular Dynamics Primer,” Int. School for Advanced Studies (SISSA-ISAS), Trieste, Italy, 1997.

    Google Scholar 

  8. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, 2004).

    Book  MATH  Google Scholar 

  9. S. Alavi and D. L. Thompson, “Simulations ofMelting of Polyatomic Solids and Nanoparticles,” Mol. Simulation 32 (12–13), 999–1015 (2006).

    Article  Google Scholar 

  10. P. Puri and V. Yang, “Effect of Particle Size on Melting of Aluminum at Nano Scales,” J. Phys. Chem. C 111, 11776–11783 (2007).

  11. J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, and W. L. Johnson, “Melting Behavior of Nanocrystalline Aluminum Powders,” Nanostruct. Mater. 2 (4), 407–413 (1993).

    Article  Google Scholar 

  12. S. Alavi and D. L. Thompson, “Molecular Dynamics Simulations of the Melting of Aluminum Nanoparticles,” J. Phys. Chem. A 110, 1518–1523 (2006).

    Article  Google Scholar 

  13. https://sites.google.com/site/eampotentials/Home.

  14. S. L. Lai, J. R. A. Carlsson, and L. H. Allen, “Melting Point Depression of Al Clusters Generated during the Early Stages of Film Growth: Nanocalorimetry Measurements,” Appl. Phys. Lett. 72 (9), 1098–1100 (1998).

    Article  ADS  Google Scholar 

  15. G. Chauhan, “Influence of Alumina Shell on Nano Aluminum Melting Temperature Depression,” in A Thesis in Mechanical Engineering (Texas Tech. Univ., 2007).

    Google Scholar 

  16. Y. F. Zhu, J. S. Lian, and Q. Jiang, “Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials,” J. Phys. Chem. C 113, 16896–16900 (2009).

    Google Scholar 

  17. H. C. Andersen, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” J. Chem. Phys. 72 (4), 2384–2393 (1980).

    Article  ADS  Google Scholar 

  18. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al. Physical Quantities: Reference Book (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  19. M. Forsblom and G. Grimvall, “Anharmonic Effects in the Heat Capacity of Al,” Phys. Rev. B 69, 165106 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Fedorov or A. V. Shulgin.

Additional information

Original Russian Text ©A.V. Fedorov, A.V. Shulgin.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 3, pp. 55–59, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Shulgin, A.V. Molecular dynamics modeling melting of of aluminum nanoparticles of the embedded atom method. Combust Explos Shock Waves 51, 333–337 (2015). https://doi.org/10.1134/S0010508215030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215030089

Keywords

Navigation