Combustion, Explosion, and Shock Waves

, Volume 51, Issue 3, pp 333–337 | Cite as

Molecular dynamics modeling melting of of aluminum nanoparticles of the embedded atom method

  • A. V. FedorovEmail author
  • A. V. ShulginEmail author


Molecular dynamics modeling of melting of aluminum nanoparticles with the use of the DL POLY simulation package and two types of parametrization of the embedded atom potential is performed. Predicted melting temperatures are compared with available experimental and numerical data. A significant scatter of data (melting temperatures as functions of the nanoparticle size) is noted. The previously proposed semi-empirical model of molecular dynamics for the description of the thermal history of the aluminum nanoparticle is justified. The specific heats obtained in this study ensure a qualitatively correct description of their dependence on temperature and on the crystal rib size.


molecular dynamics nanoparticles melting specific heat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Fedorov and A. V. Shulgin, “Complex Modeling of Melting of an Aluminum Nanoparticle,” Fiz. Goreniya Vzryva 49 (4), 68–75 (2013) [Combust., Expl., Shock Waves 49 (4), 442–449 (2013)].Google Scholar
  2. 2.
    F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: the Force-Matching Method,” Europhys. Lett. 26 (8), 583–588 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, 1991).Google Scholar
  4. 4.
    D. J. Evans and G. P. Morriss, “Non-Newtonian Molecular Dynamics,” Comput. Phys. Rep. 1 (5), 297–343 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    M. W. Finnis and J. E. Sinclair, “A Simple Empirical N-Body Potential for Transition Metals,” Philos. Mag. A 50 (1), 45–66 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    W. Smith and T. R. Forester, “DL POLY 2.0: A General-Purpose Parallel Molecular Dynamics Simulation Package,” J. Mol. Graphics 14, 136–141 (1996).CrossRefGoogle Scholar
  7. 7.
    F. Ercolessi, “A Molecular Dynamics Primer,” Int. School for Advanced Studies (SISSA-ISAS), Trieste, Italy, 1997.Google Scholar
  8. 8.
    D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, 2004).CrossRefzbMATHGoogle Scholar
  9. 9.
    S. Alavi and D. L. Thompson, “Simulations ofMelting of Polyatomic Solids and Nanoparticles,” Mol. Simulation 32 (12–13), 999–1015 (2006).CrossRefGoogle Scholar
  10. 10.
    P. Puri and V. Yang, “Effect of Particle Size on Melting of Aluminum at Nano Scales,” J. Phys. Chem. C 111, 11776–11783 (2007).Google Scholar
  11. 11.
    J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, and W. L. Johnson, “Melting Behavior of Nanocrystalline Aluminum Powders,” Nanostruct. Mater. 2 (4), 407–413 (1993).CrossRefGoogle Scholar
  12. 12.
    S. Alavi and D. L. Thompson, “Molecular Dynamics Simulations of the Melting of Aluminum Nanoparticles,” J. Phys. Chem. A 110, 1518–1523 (2006).CrossRefGoogle Scholar
  13. 13. Scholar
  14. 14.
    S. L. Lai, J. R. A. Carlsson, and L. H. Allen, “Melting Point Depression of Al Clusters Generated during the Early Stages of Film Growth: Nanocalorimetry Measurements,” Appl. Phys. Lett. 72 (9), 1098–1100 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    G. Chauhan, “Influence of Alumina Shell on Nano Aluminum Melting Temperature Depression,” in A Thesis in Mechanical Engineering (Texas Tech. Univ., 2007).Google Scholar
  16. 16.
    Y. F. Zhu, J. S. Lian, and Q. Jiang, “Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials,” J. Phys. Chem. C 113, 16896–16900 (2009).Google Scholar
  17. 17.
    H. C. Andersen, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” J. Chem. Phys. 72 (4), 2384–2393 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al. Physical Quantities: Reference Book (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  19. 19.
    M. Forsblom and G. Grimvall, “Anharmonic Effects in the Heat Capacity of Al,” Phys. Rev. B 69, 165106 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations