Advertisement

Combustion, Explosion, and Shock Waves

, Volume 51, Issue 3, pp 299–312 | Cite as

Formation of condensed combustion products in metal dust flames: Nucleation stage

  • N. I. PoletaevEmail author
Article

Abstract

The nucleation of the ionized combustion products of small (d10 ≈5 µm) particles of Al, Mg, Zr, Fe, and Ti under laminar dust flame conditions at atmospheric pressure is considered in an isothermal approximation. It is shown that under conditions close to the experimental ones, the condensation of the products of gas-phase combustion of these metals is “rapid.” Description of the “rapid” nucleation regime requires a nonstationary approach and knowledge of the kinetics of nucleation of the condensed phase and does not need a detailed analysis of the influence of environmental parameters on the free energy of formation of small nuclei. It is shown that the characteristic nucleation time of the gas-phase combustion products of metal particles is several orders of magnitude smaller than the residence time of the products in the combustion zone of the flame dust. This allows coagulation to be considered as the basic process which determines the degree of dispersion of primary particles of the metal combustion products.

Keywords

metal dust flames nucleation kinetics thermal ionization of the flame metal oxide nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Zolotko, N. I. Poletaev, J. I. Vovchuk, and A. V. Florko, “Nanoparticles Formation by Combustion Techniques: Gaseous Dispersed Synthesis of Refractory Oxides,” in Gas Phase Nanoparticle Synthesis, Ed. by_C. Granqvist, L. Kish, and W. Marlow (Springer, London, 2005), pp. 123–156.Google Scholar
  2. 2.
    A. N. Zolotko, Ya. I. Vovchuk, N. I. Poletaev, A. V. Florko, and I. S. Al’tman, “Synthesis of Nanooxides in Two-Phase Laminar Flames,” Fiz. Goreniya Vzryva 32 (3), 24–33 (1996) [Combust., Expl., Shock Waves 32 (3), 262–269 (1996).Google Scholar
  3. 3.
    N. I. Poletaev, A. N. Zolotko, and Yu. A. Doroshenko, “Degree of Dispersion of Metal Combustion Products in a Laminar Dust Flame,” Fiz. Goreniya Vzryva 47 (2), 30–44 (2011) [Combust., Expl., Shock Waves 47 (2), 153–165 (2011)].Google Scholar
  4. 4.
    A. A. Lushnikov and A. G. Sutugin, “The Present State of the Theory of Homogeneous Nucleation,” Usp. Khim. 45 (3), 385–415 (1976).CrossRefGoogle Scholar
  5. 5.
    O. G. Glotov, A. A. Onishchuk, and V. B. Karasev, “The Size and Morphology of the Nanooxide Aerosol Produced by Combustion of an Aluminum Particle,” Dokl. Akad. Nauk 412 (2), 206–209 (2007).Google Scholar
  6. 6.
    V. V. Karasev, A. A. Onischuk, S. A. Khromova, O. G. Glotov, V. E. Zarko, E. A. Pilyugina, and C. C. Tsai, “Formation of Metal Oxide Nanoparticles in Combustion of Titanium and Aluminum Droplets,” Fiz. Goreniya Vzryva 42 (6), 33–47 (2006) [Combust., Expl., Shock Waves 42 (6), 649–662 (2006)].Google Scholar
  7. 7.
    V. I. Vishnyakov, S. A. Kiro, and A. A. Ennan, “Heterogeneous Ion-Induced Nucleation in Thermal Dusty Plasmas,” J. Phys., D: Appl. Phys. 44, 215201(1)–(7) (2011).ADSCrossRefGoogle Scholar
  8. 8.
    F. M. Kumi, A.K. Shchekin, and A. P. Grinin, “Theory of Heterogeneous Nucleation for Vapor Undergoing a Gradual Metastable State Formation,” Usp. Fiz. Nauk 171 (4), 345–385 (2001).CrossRefGoogle Scholar
  9. 9.
    Yu. M. Grigor’ev, S. I. Doronin, and I. A. Filimonov, “Macrokinetics of Physicochemical Condensation in Two-Phase Systems of the Gas-Solid Body Type,” Fiz. Goreniya Vzryva 34 (3), 37–45 (1998) [Combust., Expl., Shock Waves 4 (3), 280–287 (1998)].Google Scholar
  10. 10.
    V. V. Slezov and V. V. Sagalovich, “Diffusive Decomposition of Solid Solutions,” Usp. Fiz. Nauk 151 (1), 67–103 (1987).CrossRefGoogle Scholar
  11. 11.
    N. I. Poletaev, Determination of the Time of Combustion of Fuel Particles in an Axisymmetric Laminar Flame, in Chemical and Radiation Physics, Vol. 4, Ed. by A. A. Berlin, G. B. Manelis, A. D. Merzhanov, and I. G. Assovskii (Torus Press, Moscow, 2011), pp. 281–285 [in Russian].Google Scholar
  12. 12.
    N. I. Poletaev and A. V. Florko, “Radiative Characteristics of an Aluminum Dust Plume. Condensed Phase,” Fiz. Goreniya Vzryva 43 (4), 49–58 (2007) [Combust., Expl., Shock Waves 43 (4), 414–422 (2007)].Google Scholar
  13. 13.
    V. V. Golovko, N. I. Poletaev, and A. V. Florko, “The Role of Radiation in the Heat Balance of a Laminar Diffusion Iron Flame,” in Physics of Air-Dispersed Systems, Issue 41, (2004), pp. 211–223.Google Scholar
  14. 14.
    E. P. Il’chenko, N. I. Poletaev, A. V. Florko, and T. A. Florko, “Characteristics of the Dust Particles Flames Zirconium,” in Physics of Air-Dispersed Systems, Issue 42, (2005), pp. 66–75.Google Scholar
  15. 15.
    N. I. Poletayev, A. N. Zolotko, A. V. Florko, and J. I. Vovchuk, “Combustion Synthesis and Investigation of Metal Oxide Nanopowders Properties,” Chemie Ingenieur Technik. 73 (6), 711 (2001).CrossRefGoogle Scholar
  16. 16.
    J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, “Atomic and Molecular Electron Affinities: Photoelectron Experiments and Theoretical Computations,” Chem. Rev. 102, 231–282 (2002).CrossRefGoogle Scholar
  17. 17.
    S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wang, “A Study of the Structure and Bonding of Small Aluminum Oxide Clusters by Photoelectron Spectroscopy: AlxOy (x = 1- 2, y = 1- 5),” J. Chem. Phys., No. 106(4), 1309–1317.Google Scholar
  18. 18.
    M. W. Bekstead, Y. Liang, and K. V. Padduppakkam, “Numerical Simulation of Single Aluminum Particle Combustion (Review),” Fiz. Goreniya Vzryva 41 (6), 15–33 (2005) [Combust., Expl., Shock Waves 41 (6), 622–638 (2005)].Google Scholar
  19. 19.
    Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, “Effect of Particle Size on Combustion of Aluminum Dust in Air,” Combust. Flame 156, 5–13 (2009).CrossRefGoogle Scholar
  20. 20.
    A. E. Sidorov and V. G. Shevchuk, “Laminar Flame Fine-Particle Dusts,” Fiz. Goreniya Vzryva 47 (5), 24–28 (2011) [Combust., Expl., Shock Waves 47 (5), 518–522 (2011)].Google Scholar
  21. 21.
    Ya. B. Zeldovich, “On the Theory of Combustion of Nonpremixed Gases,” Zh. Tekh. Fiz. 19 (10), 1199–1210 (1949).Google Scholar
  22. 22.
    R. Becker and W. Döring, “Kinetic Treatment of Grain- Formation in Supersaturated Vapours,” Ann. Phys. 24 (8), 719–752 (1935).CrossRefGoogle Scholar
  23. 23.
    Ya. B. Zel’dovich, “On the Theory of the Formation of a New Phase. Cavitation,” Zh. Eksp. Teor. Fiz. 12 (12), 525–538 (1942).Google Scholar
  24. 24.
    M. Volmer, Kinetics of Formation of a New Phase (Nauka, Moscow, 1986) [in Russian].Google Scholar
  25. 25.
    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000).Google Scholar
  26. 26.
    S. P. Fisenko, D. B. Kane, and M. Samy, “Kinetics of Ion-Induced Nucleation in Vapor–Gas Mixture,” J. Chem. Phys. 123, 104704 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    S. Ono and S. Kondo, Molecular Theory of Surface Tension (Izd. Inostr. Lit., Moscow, 1963) [Russian translation].Google Scholar
  28. 28.
    S. Sh. Rekhviashvili, E. V. Kishtikova, R. Yu. Karmokova, and A. M. Karmokov, “On the Calculation of Tolman’s Constant,” Pis’ma Zh. Tekh. Fiz. 33 (2), 1–7 (2007).Google Scholar
  29. 29.
    F. G. Shi, “Size Dependent Thermal Vibrations and Melting in Nanocrystals,” J. Matter. Res. 9 (5), 1307–1312 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    T. V. Bykov and A. K. Shchekin, “Surface Tension, Tolman’s Length, and Effective Hardness Constant of the Surface Layer of a Drop with a Large Curvature Radius,” Neorgan. Mater. 35 (6), 759–763 (1999).Google Scholar
  31. 31.
    G. V. Samsonov, Physicochemical Properties of Oxides (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  32. 32.
    J. A. Doroshenko, N. I. Poletaev, and V. I. Vishnyakov, “Dispersion of Dust Zizes in the Plasma of Aluminum Dust Flame,” Phys. Plasmas 16 (9), 094504 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    K. Mills, The Estimation of Slag Properties (Southern Africa Polymetallurgy, 2011).Google Scholar
  34. 34.
    J. J. Thomson and G. H. Thomson, Conduction of Electricity Through Gases (Cambridge, 1928).Google Scholar
  35. 35.
    S. V. Vosel, A. A. Onischuk, and P. A. Purtov, “Translation-Rotation Correction Factor in the Theory of Homogeneous Nucleation,” J. Chem. Phys. 131, 204508 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    B. M. Smirnov, “Cluster Plasma, ” Usp. Fiz. Nauk 170 (5), 495–534 (2000).CrossRefGoogle Scholar
  37. 37.
    Yu. G. Frolov, A Course in Colloidal Chemistry. Surface Phenomena and Disperse Systems (Khimiya, Moscow, 1988) [in Russian].Google Scholar
  38. 38.
    A. A. Arshinov and A. K. Musin, “Equilibrium Ionization in Dispersed Systems,” Radiotekh. Elektron., No. 5, 890–899 (1962).Google Scholar
  39. 39.
    B. M. Smirnov, Ions and Excited Atoms in a Plasma (Atomizdat, Moscow, 1974) [in Russian].Google Scholar
  40. 40.
    D. R. Lide, CRC Handbook of Chemistry and Physics: 86th Edition. (Taylor & Francis Group, Boca Raton, 2005).Google Scholar
  41. 41.
    S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (Wiley-Interscience, New York, 1977).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Combustion and Unconventional TechnologiesMechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations